Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be a function such that 
f(-2)=8 and 
f^(')(-2)=4.
Let 
h be the function 
h(x)=x^(3).

Evaluate 
(d)/(dx)[(f(x))/(h(x))] at 
x=-2.

- Let f f be a function such that f(2)=8 f(-2)=8 and f(2)=4 f^{\prime}(-2)=4 .\newline- Let h h be the function h(x)=x3 h(x)=x^{3} .\newlineEvaluate ddx[f(x)h(x)] \frac{d}{d x}\left[\frac{f(x)}{h(x)}\right] at x=2 x=-2 .

Full solution

Q. - Let f f be a function such that f(2)=8 f(-2)=8 and f(2)=4 f^{\prime}(-2)=4 .\newline- Let h h be the function h(x)=x3 h(x)=x^{3} .\newlineEvaluate ddx[f(x)h(x)] \frac{d}{d x}\left[\frac{f(x)}{h(x)}\right] at x=2 x=-2 .
  1. Given functions and rule: We are given the function f(x)f(x) and its derivative at x=2x=-2, as well as the function h(x)h(x). To find the derivative of the quotient f(x)h(x)\frac{f(x)}{h(x)}, we will use the quotient rule, which states that the derivative of a quotient is given by:\newlineddx[f(x)h(x)]=h(x)f(x)f(x)h(x)(h(x))2\frac{d}{dx}\left[\frac{f(x)}{h(x)}\right] = \frac{h(x)f'(x) - f(x)h'(x)}{(h(x))^2}
  2. Find derivative of h(x)h(x): First, we need to find the derivative of h(x)h(x), which is h(x)h'(x). Since h(x)=x3h(x) = x^3, we can use the power rule to find h(x)h'(x). The power rule states that the derivative of xnx^n is nxn1n\cdot x^{n-1}.\newlineSo, h(x)=ddx[x3]=3x2h'(x) = \frac{d}{dx}[x^3] = 3\cdot x^2.
  3. Evaluate h(x)h'(x) at x=2x=-2: Now we need to evaluate h(x)h'(x) at x=2x=-2. Plugging in 2-2 for xx, we get:\newlineh(2)=3(2)2=34=12h'(-2) = 3*(-2)^2 = 3*4 = 12.
  4. Evaluate h(x)h(x) at x=2x=-2: Next, we need to evaluate h(x)h(x) at x=2x=-2. Plugging in 2-2 for xx in h(x)=x3h(x) = x^3, we get:\newlineh(2)=(2)3=8h(-2) = (-2)^3 = -8.
  5. Apply quotient rule: Now we have all the values we need to apply the quotient rule:\newlinef(2)=8f(-2) = 8 (given)\newlinef(2)=4f'(-2) = 4 (given)\newlineh(2)=8h(-2) = -8 (calculated)\newlineh(2)=12h'(-2) = 12 (calculated)\newlineUsing the quotient rule:\newline(d/dx)[(f(x)/h(x))](d/dx)[(f(x)/h(x))] at x=2x=-2 = (h(2)f(2)f(2)h(2))/(h(2))2(h(-2)f'(-2) - f(-2)h'(-2)) / (h(-2))^2
  6. Calculate f(2)f(-2), f(2)f'(-2), h(2)h(-2), h(2)h'(-2): Plugging in the values we have: (d/dx)[(f(x)/h(x))](d/dx)[(f(x)/h(x))] at x=2x=-2 = ((8)4812)/(8)2((-8)\cdot 4 - 8\cdot 12) / (-8)^2
  7. Plug in values for quotient rule: Now we perform the calculations:\newline(ddx)(f(x)h(x))(\frac{d}{dx})\left(\frac{f(x)}{h(x)}\right) at x=2x=-2 = 329664\frac{-32 - 96}{64}
  8. Perform calculations: Simplify the numerator: (ddx)[f(x)h(x)](\frac{d}{dx})\left[\frac{f(x)}{h(x)}\right] at x=2x=-2 = 12864-\frac{128}{64}
  9. Simplify numerator: Finally, divide the numerator by the denominator: (ddx)[f(x)h(x)](\frac{d}{dx})\left[\frac{f(x)}{h(x)}\right] at x=2x=-2 = 2-2

More problems from Write variable expressions for arithmetic sequences