Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be a function such that 
f(-2)=-8 and 
f^(')(-2)=4.
Let 
h be the function 
h(x)=(1)/(x).

Evaluate 
(d)/(dx)[f(x)*h(x)] at 
x=-2.

- Let f f be a function such that f(2)=8 f(-2)=-8 and f(2)=4 f^{\prime}(-2)=4 .\newline- Let h h be the function h(x)=1x h(x)=\frac{1}{x} .\newlineEvaluate ddx[f(x)h(x)] \frac{d}{d x}[f(x) \cdot h(x)] at x=2 x=-2 .

Full solution

Q. - Let f f be a function such that f(2)=8 f(-2)=-8 and f(2)=4 f^{\prime}(-2)=4 .\newline- Let h h be the function h(x)=1x h(x)=\frac{1}{x} .\newlineEvaluate ddx[f(x)h(x)] \frac{d}{d x}[f(x) \cdot h(x)] at x=2 x=-2 .
  1. Identify Product Rule: question_prompt: How much is (ddx[f(x)h(x)])(\frac{d}{dx}[f(x)*h(x)]) when x=2x=-2?
  2. Find Derivative of f(x)h(x)f(x)\cdot h(x): We know that to find the derivative of a product of two functions, we use the product rule. The product rule states that ddx[uv]=uv+uv\frac{d}{dx}[u\cdot v] = u' \cdot v + u \cdot v', where uu and vv are functions of xx, and uu' and vv' are their respective derivatives.
  3. Evaluate h(2)h'(-2): Let's find the derivative of f(x)h(x)f(x)\cdot h(x) using the product rule. We have u=f(x)u=f(x) and v=h(x)v=h(x). We know f(2)=8f(-2)=-8 and f(2)=4f'(-2)=4. We also know h(x)=1xh(x)=\frac{1}{x}, so h(x)=1x2h'(x) = -\frac{1}{x^2}.
  4. Apply Product Rule at x=2x=-2: Now we need to evaluate h(2)h'(-2). h(2)=1((2)2)=14h'(-2) = -\frac{1}{((-2)^2)} = -\frac{1}{4}.
  5. Plug in Values: Using the product rule, (d)/(dx)[f(x)h(x)](d)/(dx)[f(x)*h(x)] at x=2x=-2 is f(2)h(2)+f(2)h(2)f^{'}(-2)*h(-2) + f(-2)*h^{'}(-2).
  6. Simplify and Calculate: We plug in the values we know: 4×(12)+(8)×(14)4\times\left(\frac{1}{-2}\right) + (-8)\times\left(-\frac{1}{4}\right).
  7. Simplify and Calculate: We plug in the values we know: 4(1/(2))+(8)(1/4)4*(1/(-2)) + (-8)*(-1/4). This simplifies to 2(2)-2 - (-2), which equals 00.

More problems from Write variable expressions for arithmetic sequences