Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be a function such that 
f(2)=-4 and 
f^(')(2)=4.
Let 
g be the function 
g(x)=2x^(2).

Let 
G be a function defined as 
G(x)=(f(x))/(g(x)).

G^(')(2)=

- Let f f be a function such that f(2)=4 f(2)=-4 and f(2)=4 f^{\prime}(2)=4 .\newline- Let g g be the function g(x)=2x2 g(x)=2 x^{2} .\newlineLet G G be a function defined as G(x)=f(x)g(x) G(x)=\frac{f(x)}{g(x)} .\newlineG(2)= G^{\prime}(2)=

Full solution

Q. - Let f f be a function such that f(2)=4 f(2)=-4 and f(2)=4 f^{\prime}(2)=4 .\newline- Let g g be the function g(x)=2x2 g(x)=2 x^{2} .\newlineLet G G be a function defined as G(x)=f(x)g(x) G(x)=\frac{f(x)}{g(x)} .\newlineG(2)= G^{\prime}(2)=
  1. Given values: We are given that f(2)=4f(2) = -4 and f(2)=4f'(2) = 4. We also know that g(x)=2x2g(x) = 2x^2. To find G(2)G'(2), we need to use the quotient rule for derivatives, which states that if h(x)=u(x)v(x)h(x) = \frac{u(x)}{v(x)}, then h(x)=u(x)v(x)u(x)v(x)(v(x))2h'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=f(x)u(x) = f(x) and v(x)=g(x)v(x) = g(x).
  2. Find g(x)g'(x): First, we need to find g(x)g'(x). Since g(x)=2x2g(x) = 2x^2, we can differentiate it with respect to xx to get g(x)=4xg'(x) = 4x.
  3. Evaluate g(2)g'(2): Now we can evaluate g(2)g'(2). Substituting x=2x = 2 into g(x)=4xg'(x) = 4x, we get g(2)=4×2=8g'(2) = 4 \times 2 = 8.
  4. Apply quotient rule: Next, we apply the quotient rule using the values we have:\newlineG(x)=f(x)g(x)f(x)g(x)(g(x))2G'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.\newlineWe substitute x=2x = 2 into the equation to find G(2)G'(2):\newlineG(2)=f(2)g(2)f(2)g(2)(g(2))2G'(2) = \frac{f'(2)g(2) - f(2)g'(2)}{(g(2))^2}.
  5. Find g(2)g(2): We already know that f(2)=4f(2) = -4, f(2)=4f'(2) = 4, and g(2)=8g'(2) = 8. Now we need to find g(2)g(2). Substituting x=2x = 2 into g(x)=2x2g(x) = 2x^2, we get g(2)=2×22=2×4=8g(2) = 2 \times 2^2 = 2 \times 4 = 8.
  6. Calculate G(2)G'(2): Now we have all the values we need to calculate G(2)G'(2):G(2)=(4×8(4)×8)(8)2G'(2) = \frac{(4 \times 8 - (-4) \times 8)}{(8)^2}.
  7. Simplify numerator: Simplify the numerator: G(2)=32+3264G'(2) = \frac{32 + 32}{64}.
  8. Simplify fraction: Simplify the fraction: G(2)=6464G'(2) = \frac{64}{64}.
  9. Final result: G(2)=1G'(2) = 1.

More problems from Write variable expressions for arithmetic sequences