Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be a function such that 
f(2)=3 and 
f^(')(2)=-1.
Let 
g be the function 
g(x)=x^(2).

Let 
G be a function defined as 
G(x)=f(x)*g(x).

G^(')(2)=

- Let f f be a function such that f(2)=3 f(2)=3 and f(2)=1 f^{\prime}(2)=-1 .\newline- Let g g be the function g(x)=x2 g(x)=x^{2} .\newlineLet G G be a function defined as G(x)=f(x)g(x) G(x)=f(x) \cdot g(x) .\newlineG(2)= G^{\prime}(2)=

Full solution

Q. - Let f f be a function such that f(2)=3 f(2)=3 and f(2)=1 f^{\prime}(2)=-1 .\newline- Let g g be the function g(x)=x2 g(x)=x^{2} .\newlineLet G G be a function defined as G(x)=f(x)g(x) G(x)=f(x) \cdot g(x) .\newlineG(2)= G^{\prime}(2)=
  1. Identify Product Rule: G(x)=f(x)g(x)G(x) = f(x) \cdot g(x), so we need to use the product rule to find G(x)G'(x). The product rule is (fg)=fg+fg(f \cdot g)' = f' \cdot g + f \cdot g'.
  2. Find g(x)g'(x): First, find g(x)g'(x) since g(x)=x2g(x) = x^2.\newlineg(x)=2xg'(x) = 2x.
  3. Evaluate g(2)g'(2): Now, evaluate g(2)g'(2) by substituting xx with 22.\newlineg(2)=2×2=4g'(2) = 2 \times 2 = 4.
  4. Determine f(2)f(2) and f(2)f'(2): We already know f(2)=3f(2) = 3 and f(2)=1f'(2) = -1 from the problem statement.
  5. Apply Product Rule Formula: Now, apply the product rule: G(x)=f(x)g(x)+f(x)g(x)G'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x).
  6. Substitute xx with 22: Substitute xx with 22 to find G(2)G'(2): G(2)=f(2)g(2)+f(2)g(2)G'(2) = f'(2) \cdot g(2) + f(2) \cdot g'(2).
  7. Calculate G(2)G'(2): Calculate G(2)G'(2) using the known values: G(2)=(1)×(22)+3×4G'(2) = (-1) \times (2^2) + 3 \times 4.
  8. Simplify Expression: Simplify the expression: G(2)=(1)×4+3×4G'(2) = (-1) \times 4 + 3 \times 4.
  9. Final Result: G(2)=4+12G'(2) = -4 + 12.
  10. Final Result: G(2)=4+12G'(2) = -4 + 12. G(2)=8G'(2) = 8.

More problems from Evaluate exponential functions