Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be a function such that 
f(1)=0 and 
f^(')(1)=-7.
Let 
g be the function 
g(x)=sqrtx.

Evaluate 
(d)/(dx)[(f(x))/(g(x))] at 
x=1

- Let f f be a function such that f(1)=0 f(1)=0 and f(1)=7 f^{\prime}(1)=-7 .\newline- Let g g be the function g(x)=x g(x)=\sqrt{x} .\newlineEvaluate ddx[f(x)g(x)] \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] at x=1 x=1 .

Full solution

Q. - Let f f be a function such that f(1)=0 f(1)=0 and f(1)=7 f^{\prime}(1)=-7 .\newline- Let g g be the function g(x)=x g(x)=\sqrt{x} .\newlineEvaluate ddx[f(x)g(x)] \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] at x=1 x=1 .
  1. Apply Quotient Rule: Apply the quotient rule to find the derivative of f(x)g(x)\frac{f(x)}{g(x)}. The quotient rule states that if you have a function h(x)=u(x)v(x)h(x) = \frac{u(x)}{v(x)}, then h(x)=u(x)v(x)u(x)v(x)(v(x))2h'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=f(x)u(x) = f(x) and v(x)=g(x)=xv(x) = g(x) = \sqrt{x}.
  2. Differentiate f(x)f(x) and g(x)g(x): Differentiate f(x)f(x) and g(x)g(x) with respect to xx. We are given that f(1)=7f'(1) = -7, but we do not have a general expression for f(x)f'(x). However, we only need its value at x=1x=1. To differentiate g(x)=xg(x) = \sqrt{x}, we use the power rule. The derivative of x1/2x^{1/2} is g(x)g(x)00. So, g(x)g(x)11.
  3. Evaluate Derivatives at x=1x=1: Evaluate the derivatives at x=1x=1. We have f(1)=7f'(1) = -7 and g(1)=(12)(1)12=12g'(1) = \left(\frac{1}{2}\right)(1)^{-\frac{1}{2}} = \frac{1}{2}.
  4. Plug Values into Formula: Plug the values into the quotient rule formula.\newlineUsing the values from Step 33, we get:\newlineh(1)=f(1)g(1)f(1)g(1)(g(1))2h'(1) = \frac{f'(1)g(1) - f(1)g'(1)}{(g(1))^2}.\newlineWe know that f(1)=0f(1) = 0 and g(1)=1=1g(1) = \sqrt{1} = 1.\newlineSo, h(1)=(7×10×(12))(1)2h'(1) = \frac{(-7 \times 1 - 0 \times (\frac{1}{2}))}{(1)^2}.
  5. Simplify Expression: Simplify the expression to find the derivative at x=1x=1.h(1)=($7h'(1) = (\$-7 - 00) / 11.\)h(1)=7.h'(1) = -7.

More problems from Find derivatives of sine and cosine functions