Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(3x^(3)-5x^(2)+10 x-3)/(3x+1)dx=
Choose 1 answer:
(A) 
(x^(3))/(3)+x^(2)+2x-7ln |3x+1|+C
(B) 
(x^(3))/(3)-x^(2)+2x-(7ln |3x+1|)/(3)+C
(C) 
(x^(3))/(3)+(x^(2))/(2)+4x-(7ln |3x+1|)/(3)+C
(D) 
(x^(3))/(3)-x^(2)+4x-(7ln |3x+1|)/(3)+C

3x35x2+10x33x+1dx= \int \frac{3 x^{3}-5 x^{2}+10 x-3}{3 x+1} d x= \newlineChoose 11 answer:\newline(A) x33+x2+2x7ln3x+1+C \frac{x^{3}}{3}+x^{2}+2 x-7 \ln |3 x+1|+C \newline(B) x33x2+2x7ln3x+13+C \frac{x^{3}}{3}-x^{2}+2 x-\frac{7 \ln |3 x+1|}{3}+C \newline(C) x33+x22+4x7ln3x+13+C \frac{x^{3}}{3}+\frac{x^{2}}{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C \newline(D) x33x2+4x7ln3x+13+C \frac{x^{3}}{3}-x^{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C

Full solution

Q. 3x35x2+10x33x+1dx= \int \frac{3 x^{3}-5 x^{2}+10 x-3}{3 x+1} d x= \newlineChoose 11 answer:\newline(A) x33+x2+2x7ln3x+1+C \frac{x^{3}}{3}+x^{2}+2 x-7 \ln |3 x+1|+C \newline(B) x33x2+2x7ln3x+13+C \frac{x^{3}}{3}-x^{2}+2 x-\frac{7 \ln |3 x+1|}{3}+C \newline(C) x33+x22+4x7ln3x+13+C \frac{x^{3}}{3}+\frac{x^{2}}{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C \newline(D) x33x2+4x7ln3x+13+C \frac{x^{3}}{3}-x^{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C
  1. Polynomial Long Division: First, let's try polynomial long division to simplify the integrand.
  2. Integration Steps: Divide 3x33x^3 by 3x3x to get x2x^2. Multiply (3x+1)(3x+1) by x2x^2 to get 3x3+x23x^3+x^2. Subtract this from the original polynomial to get 6x2+10x3-6x^2+10x-3.
  3. Step 11: Now, divide 6x2-6x^2 by 3x3x to get 2x-2x. Multiply (3x+1)(3x+1) by 2x-2x to get 6x22x-6x^2-2x. Subtract this from the previous remainder to get 12x312x-3.
  4. Step 22: Divide 12x12x by 3x3x to get 44. Multiply (3x+1)(3x+1) by 44 to get 12x+412x+4. Subtract this from the previous remainder to get 7-7.
  5. Step 33: So, the polynomial long division gives us x22x+473x+1x^2 - 2x + 4 - \frac{7}{3x+1}.
  6. Step 44: Now, integrate each term separately: x2dx\int x^2 \, dx, 2xdx\int -2x \, dx, 4dx\int 4 \, dx, and 73x+1dx\int -\frac{7}{3x+1} \, dx.
  7. Step 55: The integral of x2x^2 is (13)x3(\frac{1}{3})x^3.
  8. Step 66: The integral of 2x-2x is x2-x^2.
  9. Step 77: The integral of 44 is 4x4x.
  10. Step 88: The integral of 73x+1-\frac{7}{3x+1} is 7ln3x+1-7\ln|3x+1|, because the derivative of 3x+13x+1 is 33, and we have to divide by that coefficient.
  11. Step 99: So, the integral of the original function is (13)x3x2+4x(73)ln3x+1+C(\frac{1}{3})x^3 - x^2 + 4x - (\frac{7}{3})\ln|3x+1| + C.
  12. Final Integration: Comparing with the answer choices, it looks like the correct answer is (D)(D).

More problems from Find derivatives of using multiple formulae