Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
∫
3
x
3
−
5
x
2
+
10
x
−
3
3
x
+
1
d
x
=
\int \frac{3 x^{3}-5 x^{2}+10 x-3}{3 x+1} d x=
∫
3
x
+
1
3
x
3
−
5
x
2
+
10
x
−
3
d
x
=
\newline
Choose
1
1
1
answer:
\newline
(A)
x
3
3
+
x
2
+
2
x
−
7
ln
∣
3
x
+
1
∣
+
C
\frac{x^{3}}{3}+x^{2}+2 x-7 \ln |3 x+1|+C
3
x
3
+
x
2
+
2
x
−
7
ln
∣3
x
+
1∣
+
C
\newline
(B)
x
3
3
−
x
2
+
2
x
−
7
ln
∣
3
x
+
1
∣
3
+
C
\frac{x^{3}}{3}-x^{2}+2 x-\frac{7 \ln |3 x+1|}{3}+C
3
x
3
−
x
2
+
2
x
−
3
7
l
n
∣3
x
+
1∣
+
C
\newline
(C)
x
3
3
+
x
2
2
+
4
x
−
7
ln
∣
3
x
+
1
∣
3
+
C
\frac{x^{3}}{3}+\frac{x^{2}}{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C
3
x
3
+
2
x
2
+
4
x
−
3
7
l
n
∣3
x
+
1∣
+
C
\newline
(D)
x
3
3
−
x
2
+
4
x
−
7
ln
∣
3
x
+
1
∣
3
+
C
\frac{x^{3}}{3}-x^{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C
3
x
3
−
x
2
+
4
x
−
3
7
l
n
∣3
x
+
1∣
+
C
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
∫
3
x
3
−
5
x
2
+
10
x
−
3
3
x
+
1
d
x
=
\int \frac{3 x^{3}-5 x^{2}+10 x-3}{3 x+1} d x=
∫
3
x
+
1
3
x
3
−
5
x
2
+
10
x
−
3
d
x
=
\newline
Choose
1
1
1
answer:
\newline
(A)
x
3
3
+
x
2
+
2
x
−
7
ln
∣
3
x
+
1
∣
+
C
\frac{x^{3}}{3}+x^{2}+2 x-7 \ln |3 x+1|+C
3
x
3
+
x
2
+
2
x
−
7
ln
∣3
x
+
1∣
+
C
\newline
(B)
x
3
3
−
x
2
+
2
x
−
7
ln
∣
3
x
+
1
∣
3
+
C
\frac{x^{3}}{3}-x^{2}+2 x-\frac{7 \ln |3 x+1|}{3}+C
3
x
3
−
x
2
+
2
x
−
3
7
l
n
∣3
x
+
1∣
+
C
\newline
(C)
x
3
3
+
x
2
2
+
4
x
−
7
ln
∣
3
x
+
1
∣
3
+
C
\frac{x^{3}}{3}+\frac{x^{2}}{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C
3
x
3
+
2
x
2
+
4
x
−
3
7
l
n
∣3
x
+
1∣
+
C
\newline
(D)
x
3
3
−
x
2
+
4
x
−
7
ln
∣
3
x
+
1
∣
3
+
C
\frac{x^{3}}{3}-x^{2}+4 x-\frac{7 \ln |3 x+1|}{3}+C
3
x
3
−
x
2
+
4
x
−
3
7
l
n
∣3
x
+
1∣
+
C
Polynomial Long Division:
First, let's try polynomial
long division
to simplify the integrand.
Integration Steps:
Divide
3
x
3
3x^3
3
x
3
by
3
x
3x
3
x
to get
x
2
x^2
x
2
. Multiply
(
3
x
+
1
)
(3x+1)
(
3
x
+
1
)
by
x
2
x^2
x
2
to get
3
x
3
+
x
2
3x^3+x^2
3
x
3
+
x
2
. Subtract this from the original polynomial to get
−
6
x
2
+
10
x
−
3
-6x^2+10x-3
−
6
x
2
+
10
x
−
3
.
Step
1
1
1
:
Now, divide
−
6
x
2
-6x^2
−
6
x
2
by
3
x
3x
3
x
to get
−
2
x
-2x
−
2
x
. Multiply
(
3
x
+
1
)
(3x+1)
(
3
x
+
1
)
by
−
2
x
-2x
−
2
x
to get
−
6
x
2
−
2
x
-6x^2-2x
−
6
x
2
−
2
x
. Subtract this from the previous remainder to get
12
x
−
3
12x-3
12
x
−
3
.
Step
2
2
2
:
Divide
12
x
12x
12
x
by
3
x
3x
3
x
to get
4
4
4
. Multiply
(
3
x
+
1
)
(3x+1)
(
3
x
+
1
)
by
4
4
4
to get
12
x
+
4
12x+4
12
x
+
4
. Subtract this from the previous remainder to get
−
7
-7
−
7
.
Step
3
3
3
:
So, the polynomial long division gives us
x
2
−
2
x
+
4
−
7
3
x
+
1
x^2 - 2x + 4 - \frac{7}{3x+1}
x
2
−
2
x
+
4
−
3
x
+
1
7
.
Step
4
4
4
:
Now, integrate each term separately:
∫
x
2
d
x
\int x^2 \, dx
∫
x
2
d
x
,
∫
−
2
x
d
x
\int -2x \, dx
∫
−
2
x
d
x
,
∫
4
d
x
\int 4 \, dx
∫
4
d
x
, and
∫
−
7
3
x
+
1
d
x
\int -\frac{7}{3x+1} \, dx
∫
−
3
x
+
1
7
d
x
.
Step
5
5
5
:
The integral of
x
2
x^2
x
2
is
(
1
3
)
x
3
(\frac{1}{3})x^3
(
3
1
)
x
3
.
Step
6
6
6
:
The integral of
−
2
x
-2x
−
2
x
is
−
x
2
-x^2
−
x
2
.
Step
7
7
7
:
The integral of
4
4
4
is
4
x
4x
4
x
.
Step
8
8
8
:
The integral of
−
7
3
x
+
1
-\frac{7}{3x+1}
−
3
x
+
1
7
is
−
7
ln
∣
3
x
+
1
∣
-7\ln|3x+1|
−
7
ln
∣3
x
+
1∣
, because the derivative of
3
x
+
1
3x+1
3
x
+
1
is
3
3
3
, and we have to divide by that coefficient.
Step
9
9
9
:
So, the integral of the original function is
(
1
3
)
x
3
−
x
2
+
4
x
−
(
7
3
)
ln
∣
3
x
+
1
∣
+
C
(\frac{1}{3})x^3 - x^2 + 4x - (\frac{7}{3})\ln|3x+1| + C
(
3
1
)
x
3
−
x
2
+
4
x
−
(
3
7
)
ln
∣3
x
+
1∣
+
C
.
Final Integration:
Comparing with the answer choices, it looks like the correct answer is
(
D
)
(D)
(
D
)
.
More problems from Find derivatives of using multiple formulae
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant