Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to 
7^(-2)*7^(6) ?
Choose 2 answers:
A 
(7^(2))/(7^(-2))
B 
(7^(6))/(7^(-2))
(c) 
7^(-12)
D 
(7^(2))^(2)

Which expressions are equivalent to 7276 7^{-2} \cdot 7^{6} ?\newlineChoose 22 answers:\newlineA) 7272 \frac{7^{2}}{7^{-2}} \newlineB) 7672 \frac{7^{6}}{7^{-2}} \newlineC) 712 7^{-12} \newlineD) (72)2 \left(7^{2}\right)^{2}

Full solution

Q. Which expressions are equivalent to 7276 7^{-2} \cdot 7^{6} ?\newlineChoose 22 answers:\newlineA) 7272 \frac{7^{2}}{7^{-2}} \newlineB) 7672 \frac{7^{6}}{7^{-2}} \newlineC) 712 7^{-12} \newlineD) (72)2 \left(7^{2}\right)^{2}
  1. Apply Exponent Rules: To find expressions equivalent to 72×767^{-2}\times7^{6}, we need to apply the exponent rules, specifically the rule that states when multiplying expressions with the same base, we add the exponents.\newlineCalculation: 72×76=72+6=747^{-2}\times7^{6} = 7^{-2+6} = 7^{4}
  2. Evaluate Answer Choices: Now let's evaluate each answer choice to see if it simplifies to 747^{4}.\newlineChoice A: (72)/(72)(7^{2})/(7^{-2})\newlineUsing the exponent rule for division, which states that when dividing expressions with the same base, we subtract the exponents, we get:\newline(72)/(72)=72(2)=72+2=74(7^{2})/(7^{-2}) = 7^{2 - (-2)} = 7^{2 + 2} = 7^{4}
  3. Choice A Calculation: Choice B: (76)/(72)(7^{6})/(7^{-2})\newlineAgain, using the exponent rule for division:\newline(76)/(72)=76(2)=76+2=78(7^{6})/(7^{-2}) = 7^{6 - (-2)} = 7^{6 + 2} = 7^{8}\newlineThis expression simplifies to 787^{8}, not 747^{4}.
  4. Choice B Calculation: Choice C: 7127^{-12}\newlineThis expression is simply 77 raised to the power of 12-12, which is not equivalent to 747^{4}.
  5. Choice C Calculation: Choice D: (72)2(7^{2})^{2}\newlineUsing the exponent rule for raising a power to a power, which states that we multiply the exponents, we get:\newline(72)2=722=74(7^{2})^{2} = 7^{2*2} = 7^{4}

More problems from Transformations of functions