Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
y varies inversely as 
x, and 
y=10 when 
x=4, what is the value of 
y when 
x=8 ?
A 
quad y=2.5
B 
y=5
C 
y=40
D 
quad y=(1)/(5)

If y y varies inversely as x x , and y=10 y=10 when x=4 x=4 , what is the value of y y when x=8 x=8 ?\newlineA) y=2.5 y=2.5 \newlineB) y=5 y=5 \newlineC) y=40 y=40 \newlineD) y=15 y=\frac{1}{5}

Full solution

Q. If y y varies inversely as x x , and y=10 y=10 when x=4 x=4 , what is the value of y y when x=8 x=8 ?\newlineA) y=2.5 y=2.5 \newlineB) y=5 y=5 \newlineC) y=40 y=40 \newlineD) y=15 y=\frac{1}{5}
  1. Given Inverse Variation: Given that yy varies inversely as xx. This means y=kxy = \frac{k}{x} where kk is a constant.
  2. Find Constant kk: We know y=10y = 10 when x=4x = 4. Substitute these values to find kk. 10=k410 = \frac{k}{4}.
  3. Write Variation Equation: Solve for kk: Multiply both sides by 44 to isolate kk. 10×4=k10 \times 4 = k. k=40k = 40.
  4. Find yy for x=8x=8: Now, use the found value of kk to write the inverse variation equation. y=40xy = \frac{40}{x}.
  5. Find yy for x=8x=8: Now, use the found value of kk to write the inverse variation equation. y=40xy = \frac{40}{x}. To find yy when x=8x = 8, substitute 88 for xx in the equation. y=408y = \frac{40}{8}. y=5y = 5.

More problems from Write and solve inverse variation equations