Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(2x+5)(-mx+9)=0
In the given equation, 
m is a constant. If the equation has the solutions 
x=-(5)/(2) and 
x=(3)/(2), what is the value of 
m ?

(2x+5)(mx+9)=0 (2 x+5)(-m x+9)=0 \newlineIn the given equation, m m is a constant. If the equation has the solutions x=52 x=-\frac{5}{2} and x=32 x=\frac{3}{2} , what is the value of m m ?

Full solution

Q. (2x+5)(mx+9)=0 (2 x+5)(-m x+9)=0 \newlineIn the given equation, m m is a constant. If the equation has the solutions x=52 x=-\frac{5}{2} and x=32 x=\frac{3}{2} , what is the value of m m ?
  1. Given Equation and Solutions: We are given the equation (2x+5)(mx+9)=0(2x+5)(-mx+9)=0 and the solutions x=52x=-\frac{5}{2} and x=32x=\frac{3}{2}. Since these are solutions to the equation, we can substitute them into the equation to find the value of mm.
  2. Substitute x=52x=-\frac{5}{2}: First, let's substitute x=52x=-\frac{5}{2} into the equation.\newline(2x+5)(mx+9)=0(2x+5)(-mx+9)=0\newline(2(52)+5)(m(52)+9)=0(2(-\frac{5}{2})+5)(-m(-\frac{5}{2})+9)=0\newline(5+5)(5m2+9)=0(-5+5)(\frac{5m}{2}+9)=0\newline0(5m2+9)=00*(\frac{5m}{2}+9)=0\newlineSince multiplying by zero gives zero, this part of the equation is satisfied for any value of mm. This step does not help us find mm.
  3. Substitute x=32x=\frac{3}{2}: Now, let's substitute x=32x=\frac{3}{2} into the equation.\newline(2x+5)(mx+9)=0(2x+5)(-mx+9)=0\newline(2(32)+5)(m(32)+9)=0\left(2\left(\frac{3}{2}\right)+5\right)\left(-m\left(\frac{3}{2}\right)+9\right)=0\newline(3+5)(3m2+9)=0\left(3+5\right)\left(-\frac{3m}{2}+9\right)=0\newline(8)(3m2+9)=0\left(8\right)\left(-\frac{3m}{2}+9\right)=0\newlineSince the first factor is 88 and not zero, the second factor must be zero for the equation to hold true.\newline3m2+9=0-\frac{3m}{2}+9=0
  4. Solve for m: Now we solve for m.\newline3m2+9=0-\frac{3m}{2}+9=0\newline3m2=9-\frac{3m}{2}=-9\newlineMultiply both sides by 23-\frac{2}{3} to isolate m.\newlinem=(9)(23)m=(-9)\cdot(-\frac{2}{3})\newlinem=183m=\frac{18}{3}\newlinem=6m=6

More problems from Write and solve direct variation equations