Q. If A=[2−3−41], then adj(3A2+12A) is equal to
Find A2: Given matrix A: A=[2amp;−3−4amp;1]
First, we need to find A2, which is the matrix A multiplied by itself. A2=A×A A2=[2amp;−3−4amp;1]×[2amp;−3−4amp;1]
To multiply two matrices, we take the dot product of the rows of the first matrix with the columns of the second matrix. A2=[(2×2+(−3)×(−4)),(2×(−3)+(−3)×1)(−4)×2+1×(−4),(−4)×(−3)+1×1] A2=[4+12,−6−3−8−4,12+1] A2=[16,−9−12,13]
Calculate 12A: Next, we calculate 12A. 12A=12×[2amp;−3−4amp;1] 12A=[12×2amp;12×(−3)12×(−4)amp;12×1] 12A=[24amp;−36−48amp;12]
Add 3A2 and 12A: Now, we add 3A2 and 12A to get 3A2+12A. 3A2+12A=[[48,−27],[−36,39]]+[[24,−36],[−48,12]]3A2+12A=[[48+24,−27−36],[−36−48,39+12]]3A2+12A=[[72,−63],[−84,51]]
Find adjugate of 3A2+12A: The next step is to find the adjugate of the matrix 3A2+12A. The adjugate of a 2×2 matrix is found by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements.adj(3A2+12A)=[51amp;6384amp;72]
More problems from Evaluate expression when a complex numbers and a variable term is given