Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does h(t)=2t1h(t)=-2t-1 change over the interval from t=5t=-5 to t=2t=-2 ?\newlineh(t)h(t) decreases by a factor of 66 \newlineh(t)h(t) decreases by 66 \newlineh(t)h(t) decreases by 88 \newlineh(t)h(t) decreases by 44

Full solution

Q. How does h(t)=2t1h(t)=-2t-1 change over the interval from t=5t=-5 to t=2t=-2 ?\newlineh(t)h(t) decreases by a factor of 66 \newlineh(t)h(t) decreases by 66 \newlineh(t)h(t) decreases by 88 \newlineh(t)h(t) decreases by 44
  1. Step 11: Find h(5)h(-5):\newline We have: h(t)=2t1h(t) = -2t - 1\newline Find the value of h(5)h(-5).\newline Substitute t=5t = -5 in h(t)=2t1h(t) = -2t - 1.\newline h(5)=2(5)1h(-5) = -2(-5) - 1\newline h(5)=101h(-5) = 10 - 1\newline h(5)=9h(-5) = 9
  2. Step 22: Find h(2)h(-2): \newline We have: h(t)=2t1h(t) = -2t - 1\newline Find the value of h(2)h(-2).\newline Substitute t=2t = -2 in h(t)=2t1h(t) = -2t - 1.\newline h(2)=2(2)1h(-2) = -2(-2) - 1\newline h(2)=41h(-2) = 4 - 1\newline h(2)=3h(-2) = 3
  3. Step 33: Subtract h(5)h(-5) from h(2)h(-2): We found: h(5)=9h(-5) = 9 and h(2)=3h(-2) = 3\newline Subtract h(5)h(-5) from h(2)h(-2).\newline h(2)h(5)=39=6h(-2) - h(-5) = 3 - 9 = -6
  4. Step 44: Analyze h(t) Behavior: Change: h(2)h(5)=6h(-2) - h(-5) = -6\newline Is h(t)h(t) increases, decreases, or remains unchanged?\newline The value of h(t)h(t) reduces from 99 to 33. So, h(t)h(t) decreases.
  5. Step 55: Analyze Change in h(t)h(t): We found: Change: 6-6 Behavior of h(t)h(t): decreases\newline How does h(t)=2t1h(t) = -2t - 1 change from t=5t = -5 to t=2t = -2? We found that h(t)h(t) decreases and the difference is 6-6.\newline h(t)h(t) decreases by 66.

More problems from Function transformation rules