Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(x)=(7-4x)/(3+sqrt(9x-2))
We want to find 
lim_(x rarr3)h(x).
What happens when we use direct substitution?
Choose 1 answer:
A The limit exists, and we found it!
(B) The limit doesn't exist (probably an asymptote).
(c) The result is indeterminate.

h(x)=74x3+9x2 h(x)=\frac{7-4 x}{3+\sqrt{9 x-2}} \newlineWe want to find limx3h(x) \lim _{x \rightarrow 3} h(x) .\newlineWhat happens when we use direct substitution?\newlineChoose 11 answer:\newline(A) The limit exists, and we found it!\newline(B) The limit doesn't exist (probably an asymptote).\newline(C) The result is indeterminate.

Full solution

Q. h(x)=74x3+9x2 h(x)=\frac{7-4 x}{3+\sqrt{9 x-2}} \newlineWe want to find limx3h(x) \lim _{x \rightarrow 3} h(x) .\newlineWhat happens when we use direct substitution?\newlineChoose 11 answer:\newline(A) The limit exists, and we found it!\newline(B) The limit doesn't exist (probably an asymptote).\newline(C) The result is indeterminate.
  1. Plug x=3x = 3: Let's try direct substitution by plugging x=3x = 3 into h(x)h(x).\newlineh(3)=74(3)3+9(3)2h(3) = \frac{7 - 4(3)}{3 + \sqrt{9(3) - 2}}
  2. Simplify numerator and denominator: Simplify the numerator and the denominator. h(3)=7123+272h(3) = \frac{7 - 12}{3 + \sqrt{27 - 2}}
  3. Continue simplifying: Continue simplifying.\newlineh(3)=53+25h(3) = \frac{-5}{3 + \sqrt{25}}
  4. Simplify square root: Simplify the square root. h(3)=53+5h(3) = \frac{-5}{3 + 5}
  5. Add numbers in denominator: Add the numbers in the denominator.\newlineh(3)=58h(3) = \frac{-5}{8}
  6. Limit exists, answer is AA: So, the limit exists and we found it by direct substitution.\newlineThe answer is AA The limit exists, and we found it!

More problems from Write and solve inverse variation equations