Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(n)=63*(-(1)/(3))^(n)
Complete the recursive formula of 
h(n).

{:[h(1)=],[h(n)=h(n-1).]:}

h(n)=63(13)n h(n)=63 \cdot\left(-\frac{1}{3}\right)^{n} \newlineComplete the recursive formula of h(n) h(n) .\newlineh(1)=h(n)=h(n1) \begin{array}{l} h(1)=\square \\ h(n)=h(n-1) \cdot \square \end{array}

Full solution

Q. h(n)=63(13)n h(n)=63 \cdot\left(-\frac{1}{3}\right)^{n} \newlineComplete the recursive formula of h(n) h(n) .\newlineh(1)=h(n)=h(n1) \begin{array}{l} h(1)=\square \\ h(n)=h(n-1) \cdot \square \end{array}
  1. Given Explicit Formula: We are given the explicit formula for the sequence h(n)h(n) as h(n)=63(13)nh(n)=63\cdot\left(-\frac{1}{3}\right)^n. To find the recursive formula, we need to express h(n)h(n) in terms of h(n1)h(n-1).
  2. Find h(1)h(1): First, let's find h(1)h(1) by substituting n=1n=1 into the explicit formula:\newlineh(1)=63×(13)1=63×(13)=21.h(1) = 63 \times \left(-\frac{1}{3}\right)^{1} = 63 \times \left(-\frac{1}{3}\right) = -21.\newlineThis gives us the initial condition for the recursive formula.
  3. Express h(n)h(n) in terms of h(n1)h(n-1): Now, let's find h(n)h(n) in terms of h(n1)h(n-1). We know that h(n)=63×(13)nh(n) = 63 \times \left(-\frac{1}{3}\right)^n. We can express h(n1)h(n-1) similarly:\newlineh(n1)=63×(13)n1h(n-1) = 63 \times \left(-\frac{1}{3}\right)^{n-1}.
  4. Divide h(n)h(n) by h(n1)h(n-1): To find the relationship between h(n)h(n) and h(n1)h(n-1), we can divide h(n)h(n) by h(n1)h(n-1):h(n)h(n1)=63(13)n63(13)n1.\frac{h(n)}{h(n-1)} = \frac{63 \cdot \left(-\frac{1}{3}\right)^n}{63 \cdot \left(-\frac{1}{3}\right)^{n-1}}.
  5. Simplify the Equation: Simplify the right side of the equation by canceling out common factors and simplifying the powers of 13-\frac{1}{3}:h(n)h(n1)=(13)n/(13)n1=13.\frac{h(n)}{h(n-1)} = \left(-\frac{1}{3}\right)^n / \left(-\frac{1}{3}\right)^{n-1} = -\frac{1}{3}.
  6. Express h(n)h(n) in terms of h(n1)h(n-1): Now we can express h(n)h(n) in terms of h(n1)h(n-1):h(n)=h(n1)×(13).h(n) = h(n-1) \times -\left(\frac{1}{3}\right).This is the recursive formula for the sequence.

More problems from Write variable expressions for geometric sequences