Q. h(n)=−15⋅6n Complete the recursive formula of h(n). h(1)=□h(n)=h(n−1)⋅□
Find h(1): To find the recursive formula, we need to express h(n) in terms of h(n−1). Let's start by finding h(1).h(n)=−15⋅6nh(1)=−15⋅61h(1)=−15⋅6h(1)=−90
Establish Relationship: Now we need to find the relationship between h(n) and h(n−1). We know that h(n)=−15⋅6n and h(n−1)=−15⋅6(n−1). To find the multiplier that gets us from h(n−1) to h(n), we divide h(n) by h(n−1). h(n−1)h(n)=−15⋅6(n−1)−15⋅6n h(n−1)h(n)=6(n−1)6n h(n−1)0 h(n−1)1 h(n−1)2 So, h(n−1)3