Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(n)=156nh(n) = -15\cdot 6^{n} \newline Complete the recursive formula of h(n)h(n). \newlineh(1)=h(1)=\square\newlineh(n)=h(n1)h(n)=h(n-1) \cdot \square

Full solution

Q. h(n)=156nh(n) = -15\cdot 6^{n} \newline Complete the recursive formula of h(n)h(n). \newlineh(1)=h(1)=\square\newlineh(n)=h(n1)h(n)=h(n-1) \cdot \square
  1. Find h(11): To find the recursive formula, we need to express h(n)h(n) in terms of h(n1)h(n-1). Let's start by finding h(1)h(1).\newlineh(n)=156nh(n) = -15\cdot6^n\newlineh(1)=1561h(1) = -15\cdot6^1\newlineh(1)=156h(1) = -15\cdot6\newlineh(1)=90h(1) = -90
  2. Establish Relationship: Now we need to find the relationship between h(n)h(n) and h(n1)h(n-1). We know that h(n)=156nh(n) = -15\cdot6^n and h(n1)=156(n1)h(n-1) = -15\cdot6^{(n-1)}. To find the multiplier that gets us from h(n1)h(n-1) to h(n)h(n), we divide h(n)h(n) by h(n1)h(n-1).
    h(n)h(n1)=156n156(n1)\frac{h(n)}{h(n-1)} = \frac{-15\cdot6^n}{-15\cdot6^{(n-1)}}
    h(n)h(n1)=6n6(n1)\frac{h(n)}{h(n-1)} = \frac{6^n}{6^{(n-1)}}
    h(n1)h(n-1)00
    h(n1)h(n-1)11
    h(n1)h(n-1)22
    So, h(n1)h(n-1)33

More problems from Transformations of functions