Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the vector 
v has an initial point at 
(8,8) and a terminal point at 
(8,6), find the exact value of 
||v||.
Answer:

Given the vector v \mathbf{v} has an initial point at (8,8) (8,8) and a terminal point at (8,6) (8,6) , find the exact value of v \|\mathbf{v}\| .\newlineAnswer:

Full solution

Q. Given the vector v \mathbf{v} has an initial point at (8,8) (8,8) and a terminal point at (8,6) (8,6) , find the exact value of v \|\mathbf{v}\| .\newlineAnswer:
  1. Apply Formula: The magnitude of a vector vv with initial point (x1,y1)(x_1, y_1) and terminal point (x2,y2)(x_2, y_2) is given by the formula v=((x2x1)2+(y2y1)2)||v|| = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2)}. We need to apply this formula to the given points to find v||v||.
  2. Substitute Points: Substitute the given points into the formula: initial point (8,8)(8,8) and terminal point (8,6)(8,6). This gives us v=((88)2+(68)2)||v|| = \sqrt{((8 - 8)^2 + (6 - 8)^2)}.
  3. Calculate Differences: Calculate the differences: (88)2=02=0(8 - 8)^2 = 0^2 = 0 and (68)2=(2)2=4(6 - 8)^2 = (-2)^2 = 4.
  4. Substitute Values: Substitute these values into the magnitude formula: v=(0+4)||v|| = \sqrt{(0 + 4)}.
  5. Simplify Expression: Simplify the expression: v=4||\mathbf{v}|| = \sqrt{4}.
  6. Calculate Square Root: Calculate the square root of 44: 4=2\sqrt{4} = 2.

More problems from Transformations of absolute value functions: translations and reflections