Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of 
y=|x| is shifted to the left by 6 units.
What is the equation of the new graph?
Choose 1 answer:
(A) 
y=|x+6|-6
(B) 
y=|x-6|-6
(C) 
y=|x|-6
(D) 
y=|x+6|

The graph of y=x y=|x| is shifted to the left by 66 units.\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=x+66 y=|x+6|-6 \newline(B) y=x66 y=|x-6|-6 \newline(C) y=x6 y=|x|-6 \newline(D) y=x+6 y=|x+6|

Full solution

Q. The graph of y=x y=|x| is shifted to the left by 66 units.\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=x+66 y=|x+6|-6 \newline(B) y=x66 y=|x-6|-6 \newline(C) y=x6 y=|x|-6 \newline(D) y=x+6 y=|x+6|
  1. Replace with (x+6)(x + 6): To shift the graph of y=xy=|x| to the left by 66 units, we need to replace xx with (x+6)(x + 6) in the equation.\newlineThe transformation rule for horizontal shifts is: if a graph y=f(x)y=f(x) is shifted to the left by kk units, the new graph will be y=f(x+k)y=f(x+k).
  2. Apply transformation rule: Apply the transformation rule to the given function y=xy=|x|. The new equation after shifting to the left by 66 units will be y=x+6y=|x+6|.
  3. Check answer choices: Check the answer choices to see which one matches the transformed equation.\newline(A) y=x+66y=|x+6|-6 (Incorrect, this represents a shift left and down)\newline(B) y=x66y=|x-6|-6 (Incorrect, this represents a shift right and down)\newline(C) y=x6y=|x|-6 (Incorrect, this represents a shift downward only)\newline(D) y=x+6y=|x+6| (Correct, this represents a shift to the left by 66 units)

More problems from Transformations of absolute value functions: translations and reflections