Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of 
y=|x| is scaled vertically by a factor of 
(1)/(3).
What is the equation of the new graph?
Choose 1 answer:
(A) 
y=|x|-3
(B) 
y=-3|x|
(C) 
y=(1)/(3)|x|
(D) 
y=|x|-(1)/(3)

The graph of y=x y=|x| is scaled vertically by a factor of 13 \frac{1}{3} .\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=x3 y=|x|-3 \newline(B) y=3x y=-3|x| \newline(C) y=13x y=\frac{1}{3}|x| \newline(D) y=x13 y=|x|-\frac{1}{3}

Full solution

Q. The graph of y=x y=|x| is scaled vertically by a factor of 13 \frac{1}{3} .\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=x3 y=|x|-3 \newline(B) y=3x y=-3|x| \newline(C) y=13x y=\frac{1}{3}|x| \newline(D) y=x13 y=|x|-\frac{1}{3}
  1. Calculate New Equation: Vertical scaling of a graph by a factor of kk means multiplying the output (y-value) by kk. In this case, the factor is 13\frac{1}{3}, so we multiply the y-value of the original function y=xy=|x| by 13\frac{1}{3}.\newlineCalculation: New equation y=13xy = \frac{1}{3} \cdot |x|
  2. Check Answer Choices: Check the answer choices to see which one matches the new equation y=13xy = \frac{1}{3} \cdot |x|.
    (A) y=x3y=|x|-3 (This is a vertical shift, not a scaling.)
    (B) y=3xy=-3|x| (This is a vertical scaling by 3-3, not 13\frac{1}{3}.)
    (C) y=13xy=\frac{1}{3}|x| (This matches our calculation.)
    (D) y=x13y=|x|-\frac{1}{3} (This is a vertical shift, not a scaling.)

More problems from Transformations of absolute value functions: translations and reflections