Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of 
y=|x| is reflected across the 
x-axis and then scaled vertically by a factor of 
(1)/(4).
What is the equation of the new graph?
Choose 1 answer:
(A) 
y=-4|x|
(B) 
y=|x|-4
(C) 
y=-(1)/(4)|x|
(D) 
y=|x-4|

The graph of y=x y=|x| is reflected across the x x -axis and then scaled vertically by a factor of 14 \frac{1}{4} .\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=4x y=-4|x| \newline(B) y=x4 y=|x|-4 \newline(C) y=14x y=-\frac{1}{4}|x| \newline(D) y=x4 y=|x-4|

Full solution

Q. The graph of y=x y=|x| is reflected across the x x -axis and then scaled vertically by a factor of 14 \frac{1}{4} .\newlineWhat is the equation of the new graph?\newlineChoose 11 answer:\newline(A) y=4x y=-4|x| \newline(B) y=x4 y=|x|-4 \newline(C) y=14x y=-\frac{1}{4}|x| \newline(D) y=x4 y=|x-4|
  1. Reflect across x-axis: Reflect y=xy=|x| across the x-axis.\newlineTo reflect a graph across the x-axis, we multiply the function by 1-1.\newlineReflected function: y=xy = -|x|
  2. Scale vertically by 14\frac{1}{4}: Scale the reflected function vertically by a factor of 14\frac{1}{4}. To scale a function vertically, we multiply the function by the scaling factor. Scaled function: \(y = \left(\frac{\(1\)}{\(4\)}\right)(-|x|) = -\left(\frac{\(1\)}{\(4\)}\right)|x|

More problems from Transformations of absolute value functions: translations and reflections