Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the vector 
v has an initial point at 
(0,2) and a terminal point at 
(-1,2), find the exact value of 
||v||.
Answer:

Given the vector v \mathbf{v} has an initial point at (0,2) (0,2) and a terminal point at (1,2) (-1,2) , find the exact value of v \|\mathbf{v}\| .\newlineAnswer:

Full solution

Q. Given the vector v \mathbf{v} has an initial point at (0,2) (0,2) and a terminal point at (1,2) (-1,2) , find the exact value of v \|\mathbf{v}\| .\newlineAnswer:
  1. Calculate Distance Formula: To find the magnitude of vector vv, we need to calculate the distance between its initial and terminal points using the distance formula for points in a 22D space: v=((x2x1)2+(y2y1)2)||v|| = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2)}, where (x1,y1)(x_1, y_1) is the initial point and (x2,y2)(x_2, y_2) is the terminal point.
  2. Substitute Coordinates: Substitute the coordinates of the initial point (0,2)(0,2) and the terminal point (1,2)(-1,2) into the distance formula: v=((10)2+(22)2)||v|| = \sqrt{((-1 - 0)^2 + (2 - 2)^2)}.
  3. Calculate Squares: Calculate the squares of the differences: v=(1)2+(0)2||\mathbf{v}|| = \sqrt{(-1)^2 + (0)^2}.
  4. Simplify Squares: Simplify the squares: v=1+0||\mathbf{v}|| = \sqrt{1 + 0}.
  5. Add Values: Add the values inside the square root: v=1.||v|| = \sqrt{1}.
  6. Take Square Root: Take the square root of 11: v=1||v|| = 1.

More problems from Transformations of absolute value functions: translations and reflections