Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln(50) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(50) \ln (50) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(50) \ln (50) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Factorize 5050: We need to express ln(50)\ln(50) using the given substitutions. We can start by expressing 5050 as a product of its prime factors.\newline5050 can be written as 2×522 \times 5^2.
  2. Apply Logarithm Property: Now we can use the properties of logarithms to break down ln(50)\ln(50) into the sum of the logarithms of its prime factors.ln(50)=ln(2×52)\ln(50) = \ln(2 \times 5^2)
  3. Use Power Rule: Using the logarithm property that ln(xy)=ln(x)+ln(y)\ln(xy) = \ln(x) + \ln(y), we can separate the factors.\newlineln(50)=ln(2)+ln(52)\ln(50) = \ln(2) + \ln(5^2)
  4. Substitute Given Values: Next, we apply the power rule of logarithms, which states that ln(xy)=yln(x)\ln(x^y) = y \cdot \ln(x), to the term ln(52)\ln(5^2).ln(50)=ln(2)+2ln(5)\ln(50) = \ln(2) + 2 \cdot \ln(5)
  5. Substitute Given Values: Next, we apply the power rule of logarithms, which states that ln(xy)=yln(x)\ln(x^y) = y \cdot \ln(x), to the term ln(52)\ln(5^2). ln(50)=ln(2)+2ln(5)\ln(50) = \ln(2) + 2 \cdot \ln(5) Now we substitute the given values for ln(2)\ln(2) and ln(5)\ln(5), which are aa and cc, respectively. ln(50)=a+2c\ln(50) = a + 2c

More problems from Write and solve inverse variation equations