Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln((25)/(27)) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(2527) \ln \left(\frac{25}{27}\right) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(2527) \ln \left(\frac{25}{27}\right) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Rewrite using substitutions: Given that ln2=a\ln 2 = a, ln3=b\ln 3 = b, and ln5=c\ln 5 = c, we need to express ln(2527)\ln\left(\frac{25}{27}\right) using these substitutions.\newlineFirst, we can rewrite 2525 as 525^2 and 2727 as 333^3.\newlineSo, ln(2527)\ln\left(\frac{25}{27}\right) becomes ln(5233)\ln\left(\frac{5^2}{3^3}\right).
  2. Separate terms in logarithm: Using the properties of logarithms, we can separate the terms in the logarithm. ln(5233)=ln(52)ln(33)\ln\left(\frac{5^2}{3^3}\right) = \ln(5^2) - \ln(3^3).
  3. Apply power rule of logarithms: Now, apply the power rule of logarithms, which states that ln(xy)=yln(x)\ln(x^y) = y \cdot \ln(x). This gives us 2ln(5)3ln(3)2 \cdot \ln(5) - 3 \cdot \ln(3).
  4. Substitute given values: Substitute the given values for ln(5)\ln(5) and ln(3)\ln(3). This results in 2×c3×b2 \times c - 3 \times b.
  5. Final answer: The expression 2×c3×b2 \times c - 3 \times b is the final answer in terms of aa, bb, and cc.

More problems from Write and solve inverse variation equations