Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the substitutions 
ln 2=a,ln 3=b, and 
ln 5=c, find the value of 
ln(200) in terms of 
a,b, and 
c.
Answer:

Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(200) \ln (200) in terms of a,b a, b , and c c .\newlineAnswer:

Full solution

Q. Given the substitutions ln2=a,ln3=b \ln 2=a, \ln 3=b , and ln5=c \ln 5=c , find the value of ln(200) \ln (200) in terms of a,b a, b , and c c .\newlineAnswer:
  1. Factor and Expand: Express ln(200)\ln(200) in terms of ln(2)\ln(2), ln(3)\ln(3), and ln(5)\ln(5). We can factor 200200 as 23×522^3 \times 5^2. Therefore, ln(200)\ln(200) can be written as ln(23×52)\ln(2^3 \times 5^2). Using the properties of logarithms, we can expand this as ln(23)+ln(52)\ln(2^3) + \ln(5^2).
  2. Apply Power Rule: Apply the power rule of logarithms to simplify ln(23)\ln(2^3) and ln(52)\ln(5^2). The power rule states that ln(xn)=nln(x)\ln(x^n) = n \cdot \ln(x). Therefore, ln(23)\ln(2^3) becomes 3ln(2)3 \cdot \ln(2) and ln(52)\ln(5^2) becomes 2ln(5)2 \cdot \ln(5).
  3. Substitute Values: Substitute the given values for ln(2)\ln(2) and ln(5)\ln(5). We know that ln(2)=a\ln(2) = a and ln(5)=c\ln(5) = c. So, we replace ln(2)\ln(2) with aa and ln(5)\ln(5) with cc in our equation. This gives us 3×a+2×c3 \times a + 2 \times c.
  4. Final Expression: Write the final expression for ln(200)\ln(200) in terms of aa, bb, and cc.\newlineSince there is no ln(3)\ln(3) in our expression, bb does not appear in the final answer.\newlineThe final expression for ln(200)\ln(200) is 3×a+2×c3 \times a + 2 \times c.

More problems from Write and solve inverse variation equations