Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
f(x)=5x,quad g(x)=x+1 and 
h(x)=f(x+1)-2g(x-2), then what is the value of 
h(1) ?
Answer:

Given that f(x)=5x,g(x)=x+1 f(x)=5 x, \quad g(x)=x+1 and h(x)=f(x+1)2g(x2) h(x)=f(x+1)-2 g(x-2) , then what is the value of h(1) h(1) ?\newlineAnswer:

Full solution

Q. Given that f(x)=5x,g(x)=x+1 f(x)=5 x, \quad g(x)=x+1 and h(x)=f(x+1)2g(x2) h(x)=f(x+1)-2 g(x-2) , then what is the value of h(1) h(1) ?\newlineAnswer:
  1. Understand Given Functions: Understand the functions given and what is asked.\newlineWe are given three functions: f(x)=5xf(x) = 5x, g(x)=x+1g(x) = x + 1, and h(x)=f(x+1)2g(x2)h(x) = f(x + 1) - 2g(x - 2). We need to find the value of h(1)h(1).
  2. Calculate f(x+1)f(x + 1): Calculate f(x+1)f(x + 1) when x=1x = 1.\newlineSubstitute x=1x = 1 into the function f(x)=5xf(x) = 5x to get f(1+1)f(1 + 1).\newlinef(1+1)=5(1+1)=5(2)=10f(1 + 1) = 5(1 + 1) = 5(2) = 10
  3. Calculate g(x2)g(x - 2): Calculate g(x2)g(x - 2) when x=1x = 1.\newlineSubstitute x=1x = 1 into the function g(x)=x+1g(x) = x + 1 to get g(12)g(1 - 2).\newlineg(12)=(12)+1=1+1=0g(1 - 2) = (1 - 2) + 1 = -1 + 1 = 0
  4. Calculate h(1)h(1): Calculate h(1)h(1) using the values from Step 22 and Step 33.\newlineSubstitute the results into h(x)=f(x+1)2g(x2)h(x) = f(x + 1) - 2g(x - 2) to find h(1)h(1).\newlineh(1)=f(1+1)2g(12)=102(0)=100=10h(1) = f(1 + 1) - 2g(1 - 2) = 10 - 2(0) = 10 - 0 = 10

More problems from Write and solve inverse variation equations