Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
f(x)=5x,quad g(x)=x-1 and 
h(x)=-3f(x+2)+2g(x), then what is the value of 
h(3) ?
Answer:

Given that f(x)=5x,g(x)=x1 f(x)=5 x, \quad g(x)=x-1 and h(x)=3f(x+2)+2g(x) h(x)=-3 f(x+2)+2 g(x) , then what is the value of h(3) h(3) ?\newlineAnswer:

Full solution

Q. Given that f(x)=5x,g(x)=x1 f(x)=5 x, \quad g(x)=x-1 and h(x)=3f(x+2)+2g(x) h(x)=-3 f(x+2)+2 g(x) , then what is the value of h(3) h(3) ?\newlineAnswer:
  1. Calculate f(3+2)f(3 + 2): Given the functions f(x)=5xf(x) = 5x, g(x)=x1g(x) = x - 1, and h(x)=3f(x+2)+2g(x)h(x) = -3f(x + 2) + 2g(x), we need to find the value of h(3)h(3). First, we will find the value of f(3+2)f(3 + 2) and g(3)g(3). Calculate f(3+2)f(3 + 2) by substituting x=3+2x = 3 + 2 into f(x)f(x). f(x)=5xf(x) = 5x00 f(x)=5xf(x) = 5x11 f(x)=5xf(x) = 5x22
  2. Calculate g(3)g(3): Now, calculate g(3)g(3) by substituting x=3x = 3 into g(x)g(x).\newlineg(3)=31g(3) = 3 - 1\newlineg(3)=2g(3) = 2
  3. Calculate h(3)h(3): With the values of f(3+2)f(3 + 2) and g(3)g(3) found, we can now calculate h(3)h(3). Substitute f(3+2)f(3 + 2) and g(3)g(3) into h(x)h(x) to find h(3)h(3). h(3)=3f(3+2)+2g(3)h(3) = -3f(3 + 2) + 2g(3) h(3)=3(25)+2(2)h(3) = -3(25) + 2(2) f(3+2)f(3 + 2)00 f(3+2)f(3 + 2)11

More problems from Write and solve inverse variation equations