Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=arccos(2x)

g^(')(x)=?
Choose 1 answer:
(A) 
(-2)/(sqrt(1-4x^(2)))
(B) 
(2)/(sqrt(1-4x^(2)))
(C) 
(-2)/(sqrt(4x^(2)-1))
(D) 
(2)/(sqrt(4x^(2)-1))

g(x)=arccos(2x) g(x)=\arccos (2 x) \newlineg(x)=? g^{\prime}(x)=? \newlineChoose 11 answer:\newline(A) 214x2 \frac{-2}{\sqrt{1-4 x^{2}}} \newline(B) 214x2 \frac{2}{\sqrt{1-4 x^{2}}} \newline(C) 24x21 \frac{-2}{\sqrt{4 x^{2}-1}} \newline(D) 24x21 \frac{2}{\sqrt{4 x^{2}-1}}

Full solution

Q. g(x)=arccos(2x) g(x)=\arccos (2 x) \newlineg(x)=? g^{\prime}(x)=? \newlineChoose 11 answer:\newline(A) 214x2 \frac{-2}{\sqrt{1-4 x^{2}}} \newline(B) 214x2 \frac{2}{\sqrt{1-4 x^{2}}} \newline(C) 24x21 \frac{-2}{\sqrt{4 x^{2}-1}} \newline(D) 24x21 \frac{2}{\sqrt{4 x^{2}-1}}
  1. Chain Rule Differentiation: step_1: Use the chain rule to differentiate g(x)=arccos(2x)g(x) = \arccos(2x). The derivative of arccos(u)\arccos(u) with respect to uu is 11u2-\frac{1}{\sqrt{1-u^2}}. Let u=2xu = 2x, then dudx=2\frac{du}{dx} = 2. g(x)=ddx(arccos(u))dudx=(11u2)(2)g'(x) = \frac{d}{dx}(\arccos(u)) \cdot \frac{du}{dx} = \left(-\frac{1}{\sqrt{1-u^2}}\right) \cdot (2).
  2. Substitute u into Derivative: step_2: Substitute u=2xu = 2x into the derivative.g(x)=(1/1(2x)2)×(2)=(2)/(14x2)g'(x) = (-1/\sqrt{1-(2x)^2}) \times (2) = (-2)/(\sqrt{1-4x^2}).

More problems from Find derivatives of inverse trigonometric functions