Q. g(n)=80⋅(43)nComplete the recursive formula of g(n).g(1)=□g(n)=g(n−1)⋅□
Given explicit formula: We are given the explicit formula for the sequence:g(n)=80×(43)nTo find the recursive formula, we need to express g(n) in terms of g(n−1).
Find g(1): First, let's find g(1) by substituting n=1 into the explicit formula:g(1)=80×(43)1=80×43=60So, g(1)=60.
Express in terms of g(n−1): Now, let's find g(n) in terms of g(n−1). We know that:g(n)=80×(43)ng(n−1)=80×(43)n−1To express g(n) in terms of g(n−1), we divide g(n) by g(n−1):g(n−1)g(n)=80×(43)n−180×(43)n
Simplify the equation: Simplify the right side of the equation:g(n)/g(n−1)=(3/4)n/(3/4)n−1Using the property of exponents, (am)/(an)=am−n, we get:g(n)/g(n−1)=(3/4)n−(n−1)=(3/4)1=3/4
Write recursive formula: Now we can write g(n) in terms of g(n−1):g(n)=g(n−1)×(43)This is the recursive formula for the sequence.
More problems from Write variable expressions for geometric sequences