Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(n)=80*((3)/(4))^(n)
Complete the recursive formula of 
g(n).

{:[g(1)=◻],[g(n)=g(n-1).]:}

g(n)=80(34)n g(n)=80 \cdot\left(\frac{3}{4}\right)^{n} \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)= g(1)= \square \newlineg(n)=g(n1) g(n)=g(n-1) \cdot \square

Full solution

Q. g(n)=80(34)n g(n)=80 \cdot\left(\frac{3}{4}\right)^{n} \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)= g(1)= \square \newlineg(n)=g(n1) g(n)=g(n-1) \cdot \square
  1. Given explicit formula: We are given the explicit formula for the sequence:\newlineg(n)=80×(34)ng(n) = 80 \times \left(\frac{3}{4}\right)^n\newlineTo find the recursive formula, we need to express g(n)g(n) in terms of g(n1)g(n-1).
  2. Find g(1)g(1): First, let's find g(1)g(1) by substituting n=1n = 1 into the explicit formula:\newlineg(1)=80×(34)1=80×34=60g(1) = 80 \times (\frac{3}{4})^1 = 80 \times \frac{3}{4} = 60\newlineSo, g(1)=60g(1) = 60.
  3. Express in terms of g(n1)g(n-1): Now, let's find g(n)g(n) in terms of g(n1)g(n-1). We know that:\newlineg(n)=80×(34)ng(n) = 80 \times \left(\frac{3}{4}\right)^n\newlineg(n1)=80×(34)n1g(n-1) = 80 \times \left(\frac{3}{4}\right)^{n-1}\newlineTo express g(n)g(n) in terms of g(n1)g(n-1), we divide g(n)g(n) by g(n1)g(n-1):\newlineg(n)g(n1)=80×(34)n80×(34)n1\frac{g(n)}{g(n-1)} = \frac{80 \times \left(\frac{3}{4}\right)^n}{80 \times \left(\frac{3}{4}\right)^{n-1}}
  4. Simplify the equation: Simplify the right side of the equation:\newlineg(n)/g(n1)=(3/4)n/(3/4)n1g(n) / g(n-1) = (3/4)^n / (3/4)^{n-1}\newlineUsing the property of exponents, (am)/(an)=amn(a^m) / (a^n) = a^{m-n}, we get:\newlineg(n)/g(n1)=(3/4)n(n1)=(3/4)1=3/4g(n) / g(n-1) = (3/4)^{n - (n-1)} = (3/4)^1 = 3/4
  5. Write recursive formula: Now we can write g(n)g(n) in terms of g(n1)g(n-1):g(n)=g(n1)×(34)g(n) = g(n-1) \times \left(\frac{3}{4}\right)This is the recursive formula for the sequence.

More problems from Write variable expressions for geometric sequences