Q. g(n)=−72⋅(61)n−1Complete the recursive formula of g(n).g(1)=□g(n)=g(n−1)⋅□
Given Explicit Formula: We are given the explicit formula for the sequence:g(n)=−72×(61)n−1To find the recursive formula, we need to express g(n) in terms of g(n−1).First, let's find g(1) by substituting n=1 into the explicit formula.g(1)=−72×(61)1−1g(1)=−72×(61)0g(1)=−72×1g(1)=−72
Find g(1): Now, let's find g(n) in terms of g(n−1). We know that g(n)=−72×(61)(n−1). Let's write g(n−1) using the same formula: g(n−1)=−72×(61)((n−1)−1)g(n−1)=−72×(61)(n−2)
Express g(n) in terms of g(n−1): To express g(n) in terms of g(n−1), we can divide g(n) by g(n−1):g(n−1)g(n)=−72×(61)n−2−72×(61)n−1Simplifying the right side, we get:g(n−1)g(n)=(61)n−2(61)n−1g(n−1)g(n)=61
Write Recursive Formula: Now, we can write g(n) in terms of g(n−1):g(n)=g(n−1)×(61)
Write Recursive Formula: Now, we can write g(n) in terms of g(n−1):g(n)=g(n−1)×(61)We have found g(1) and the relationship between g(n) and g(n−1). Therefore, the recursive formula for the sequence is:\begin{cases}g(1)=-72\g(n)=g(n-1)\times\left(\frac{1}{6}\right)\end{cases}
More problems from Write variable expressions for geometric sequences