Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(n)=-72*((1)/(6))^(n-1)
Complete the recursive formula of 
g(n).

{:[g(1)=◻],[g(n)=g(n-1).]:}

g(n)=72(16)n1 g(n)=-72 \cdot\left(\frac{1}{6}\right)^{n-1} \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)=g(n)=g(n1) \begin{array}{l} g(1)=\square \\ g(n)=g(n-1) \cdot \square \end{array}

Full solution

Q. g(n)=72(16)n1 g(n)=-72 \cdot\left(\frac{1}{6}\right)^{n-1} \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)=g(n)=g(n1) \begin{array}{l} g(1)=\square \\ g(n)=g(n-1) \cdot \square \end{array}
  1. Given Explicit Formula: We are given the explicit formula for the sequence:\newlineg(n)=72×(16)n1g(n) = -72 \times \left(\frac{1}{6}\right)^{n - 1}\newlineTo find the recursive formula, we need to express g(n)g(n) in terms of g(n1)g(n-1).\newlineFirst, let's find g(1)g(1) by substituting n=1n = 1 into the explicit formula.\newlineg(1)=72×(16)11g(1) = -72 \times \left(\frac{1}{6}\right)^{1 - 1}\newlineg(1)=72×(16)0g(1) = -72 \times \left(\frac{1}{6}\right)^0\newlineg(1)=72×1g(1) = -72 \times 1\newlineg(1)=72g(1) = -72
  2. Find g(1)g(1): Now, let's find g(n)g(n) in terms of g(n1)g(n-1). We know that g(n)=72×(16)(n1)g(n) = -72 \times (\frac{1}{6})^{(n - 1)}. Let's write g(n1)g(n-1) using the same formula: g(n1)=72×(16)((n1)1)g(n-1) = -72 \times (\frac{1}{6})^{((n-1) - 1)} g(n1)=72×(16)(n2)g(n-1) = -72 \times (\frac{1}{6})^{(n - 2)}
  3. Express g(n)g(n) in terms of g(n1)g(n-1): To express g(n)g(n) in terms of g(n1)g(n-1), we can divide g(n)g(n) by g(n1)g(n-1):g(n)g(n1)=72×(16)n172×(16)n2\frac{g(n)}{g(n-1)} = \frac{-72 \times (\frac{1}{6})^{n - 1}}{-72 \times (\frac{1}{6})^{n - 2}}Simplifying the right side, we get:g(n)g(n1)=(16)n1(16)n2\frac{g(n)}{g(n-1)} = \frac{(\frac{1}{6})^{n - 1}}{(\frac{1}{6})^{n - 2}}g(n)g(n1)=16\frac{g(n)}{g(n-1)} = \frac{1}{6}
  4. Write Recursive Formula: Now, we can write g(n)g(n) in terms of g(n1)g(n-1):g(n)=g(n1)×(16)g(n) = g(n-1) \times \left(\frac{1}{6}\right)
  5. Write Recursive Formula: Now, we can write g(n)g(n) in terms of g(n1)g(n-1):g(n)=g(n1)×(16)g(n) = g(n-1) \times \left(\frac{1}{6}\right)We have found g(1)g(1) and the relationship between g(n)g(n) and g(n1)g(n-1). Therefore, the recursive formula for the sequence is:\begin{cases}g(1)=-72\g(n)=g(n-1)\times\left(\frac{1}{6}\right)\end{cases}

More problems from Write variable expressions for geometric sequences