Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(n)=-11*4^(n)
Complete the recursive formula of g(n).
g(1)=_____
g(n)=g(n-1) . _____

g(n)=114ng(n)=-11 \cdot 4^{n}\newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)=_____g(1)=\_\_\_\_\_\newlineg(n)=g(n1)_____g(n)=g(n-1) \text {. } \_\_\_\_\_

Full solution

Q. g(n)=114ng(n)=-11 \cdot 4^{n}\newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)=_____g(1)=\_\_\_\_\_\newlineg(n)=g(n1)_____g(n)=g(n-1) \text {. } \_\_\_\_\_
  1. Find Initial Value: To find the initial value g(1)g(1), we substitute nn with 11 in the function g(n)=114(n)g(n)=-11\cdot4^{(n)}.\newlineCalculation: g(1)=114(1)=114=44g(1) = -11\cdot4^{(1)} = -11\cdot4 = -44
  2. Recursive Formula: The recursive formula for g(n)g(n) is based on the relationship between g(n)g(n) and g(n1)g(n-1). Since g(n)=114ng(n)=-11\cdot4^{n}, we can express g(n)g(n) in terms of g(n1)g(n-1) by recognizing that 4n=44n14^{n} = 4\cdot4^{n-1}.\newlineTherefore, g(n)=1144n1g(n) = -11\cdot4\cdot4^{n-1}.\newlineSince g(n1)=114n1g(n-1) = -11\cdot4^{n-1}, we can write g(n)g(n) as g(n)g(n)00 times g(n1)g(n-1).\newlineCalculation: g(n)g(n)22

More problems from Linear approximation