Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the 
y-coordinate of the 
y-intercept of the polynomial function defined below.

f(x)=4x-4x^(2)+5x^(5)+3x^(3)+5x^(4)
Answer:

Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=4x4x2+5x5+3x3+5x4 f(x)=4 x-4 x^{2}+5 x^{5}+3 x^{3}+5 x^{4} \newlineAnswer:

Full solution

Q. Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=4x4x2+5x5+3x3+5x4 f(x)=4 x-4 x^{2}+5 x^{5}+3 x^{3}+5 x^{4} \newlineAnswer:
  1. Evaluate f(x)f(x) at x=0x=0: To find the yy-coordinate of the yy-intercept of the function f(x)f(x), we need to evaluate f(x)f(x) when x=0x = 0.
  2. Substitute x=0x=0 into f(x)f(x): Substitute x=0x = 0 into the polynomial function f(x)=4x4x2+5x5+3x3+5x4f(x) = 4x - 4x^2 + 5x^5 + 3x^3 + 5x^4.
  3. Calculate f(0)f(0): f(0)=4(0)4(0)2+5(0)5+3(0)3+5(0)4f(0) = 4(0) - 4(0)^2 + 5(0)^5 + 3(0)^3 + 5(0)^4.
  4. Simplify the expression: Simplify the expression by calculating the value of each term when x=0x = 0.f(0)=00+0+0+0.f(0) = 0 - 0 + 0 + 0 + 0.
  5. Final result: The result of f(0)f(0) is 00, which means the y-coordinate of the y-intercept is 00.

More problems from Reflections of functions