Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the 
y-coordinate of the 
y-intercept of the polynomial function defined below.

f(x)=2(x^(2)+3)(x-2)(x-5)
Answer:

Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=2(x2+3)(x2)(x5) f(x)=2\left(x^{2}+3\right)(x-2)(x-5) \newlineAnswer:

Full solution

Q. Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=2(x2+3)(x2)(x5) f(x)=2\left(x^{2}+3\right)(x-2)(x-5) \newlineAnswer:
  1. Evaluate at x=0x = 0: To find the yy-coordinate of the yy-intercept of the function, we need to evaluate the function at x=0x = 0, because the yy-intercept occurs where the graph of the function crosses the yy-axis, and the xx-coordinate of any point on the yy-axis is 00.
  2. Substitute x=0x = 0: Substitute x=0x = 0 into the function f(x)f(x) to find the yy-coordinate of the yy-intercept.\newlinef(0)=2(02+3)(02)(05)f(0) = 2(0^2 + 3)(0 - 2)(0 - 5)
  3. Simplify expression: Simplify the expression by performing the operations. f(0)=2(3)(2)(5)f(0) = 2(3)(-2)(-5)
  4. Calculate product: Calculate the product of the numbers.\newlinef(0)=2×3×2×5f(0) = 2 \times 3 \times 2 \times 5\newlinef(0)=6×2×5f(0) = 6 \times 2 \times 5\newlinef(0)=12×5f(0) = 12 \times 5\newlinef(0)=60f(0) = 60

More problems from Reflections of functions