Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find the value of
c
c
c
so that
(
x
+
1
)
(x+1)
(
x
+
1
)
is a factor of the polynomial
p
(
x
)
p(x)
p
(
x
)
.
\newline
p
(
x
)
=
5
x
4
+
7
x
3
−
2
x
2
−
3
x
+
c
c
=
\begin{array}{l} p(x)=5 x^{4}+7 x^{3}-2 x^{2}-3 x+c \\ c= \end{array}
p
(
x
)
=
5
x
4
+
7
x
3
−
2
x
2
−
3
x
+
c
c
=
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of sine and cosine functions
Full solution
Q.
Find the value of
c
c
c
so that
(
x
+
1
)
(x+1)
(
x
+
1
)
is a factor of the polynomial
p
(
x
)
p(x)
p
(
x
)
.
\newline
p
(
x
)
=
5
x
4
+
7
x
3
−
2
x
2
−
3
x
+
c
c
=
\begin{array}{l} p(x)=5 x^{4}+7 x^{3}-2 x^{2}-3 x+c \\ c= \end{array}
p
(
x
)
=
5
x
4
+
7
x
3
−
2
x
2
−
3
x
+
c
c
=
Apply Remainder Theorem:
Since
(
x
+
1
)
(x+1)
(
x
+
1
)
is a factor of
p
(
x
)
p(x)
p
(
x
)
, we can use the Remainder Theorem which states that if
(
x
+
1
)
(x+1)
(
x
+
1
)
is a factor, then
p
(
−
1
)
=
0
p(-1) = 0
p
(
−
1
)
=
0
.
Substitute
x
=
−
1
x = -1
x
=
−
1
:
Plug
x
=
−
1
x = -1
x
=
−
1
into the polynomial
p
(
x
)
p(x)
p
(
x
)
to find the value of
c
c
c
.
\newline
p
(
−
1
)
=
5
(
−
1
)
4
+
7
(
−
1
)
3
−
2
(
−
1
)
2
−
3
(
−
1
)
+
c
p(-1) = 5(-1)^{4} + 7(-1)^{3} - 2(-1)^{2} - 3(-1) + c
p
(
−
1
)
=
5
(
−
1
)
4
+
7
(
−
1
)
3
−
2
(
−
1
)
2
−
3
(
−
1
)
+
c
Simplify the expression:
Simplify the expression.
\newline
p
(
−
1
)
=
5
(
1
)
+
7
(
−
1
)
−
2
(
1
)
+
3
+
c
p(-1) = 5(1) + 7(-1) - 2(1) + 3 + c
p
(
−
1
)
=
5
(
1
)
+
7
(
−
1
)
−
2
(
1
)
+
3
+
c
Combine like terms:
Combine like terms.
p
(
−
1
)
=
5
−
7
−
2
+
3
+
c
p(-1) = 5 - 7 - 2 + 3 + c
p
(
−
1
)
=
5
−
7
−
2
+
3
+
c
Further simplify:
Further simplify to find the value of
c
c
c
.
0
=
5
−
7
−
2
+
3
+
c
0 = 5 - 7 - 2 + 3 + c
0
=
5
−
7
−
2
+
3
+
c
Add up the numbers:
Add up the numbers.
0
=
−
1
+
c
0 = -1 + c
0
=
−
1
+
c
Solve for c:
Solve for
c
c
c
.
c
=
1
c = 1
c
=
1
More problems from Find derivatives of sine and cosine functions
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant