Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the value of 
c so that 
(x+1) is a factor of the polynomial 
p(x).

{:[p(x)=5x^(4)+7x^(3)-2x^(2)-3x+c],[c=]:}

Find the value of c c so that (x+1) (x+1) is a factor of the polynomial p(x) p(x) .\newlinep(x)=5x4+7x32x23x+cc= \begin{array}{l} p(x)=5 x^{4}+7 x^{3}-2 x^{2}-3 x+c \\ c= \end{array}

Full solution

Q. Find the value of c c so that (x+1) (x+1) is a factor of the polynomial p(x) p(x) .\newlinep(x)=5x4+7x32x23x+cc= \begin{array}{l} p(x)=5 x^{4}+7 x^{3}-2 x^{2}-3 x+c \\ c= \end{array}
  1. Apply Remainder Theorem: Since (x+1)(x+1) is a factor of p(x)p(x), we can use the Remainder Theorem which states that if (x+1)(x+1) is a factor, then p(1)=0p(-1) = 0.
  2. Substitute x=1x = -1: Plug x=1x = -1 into the polynomial p(x)p(x) to find the value of cc.\newlinep(1)=5(1)4+7(1)32(1)23(1)+cp(-1) = 5(-1)^{4} + 7(-1)^{3} - 2(-1)^{2} - 3(-1) + c
  3. Simplify the expression: Simplify the expression.\newlinep(1)=5(1)+7(1)2(1)+3+cp(-1) = 5(1) + 7(-1) - 2(1) + 3 + c
  4. Combine like terms: Combine like terms. p(1)=572+3+cp(-1) = 5 - 7 - 2 + 3 + c
  5. Further simplify: Further simplify to find the value of cc.0=572+3+c0 = 5 - 7 - 2 + 3 + c
  6. Add up the numbers: Add up the numbers. 0=1+c0 = -1 + c
  7. Solve for c: Solve for cc.c=1c = 1

More problems from Find derivatives of sine and cosine functions