Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=4quad log b=4quad log c=-4],[log ((a^(9)b^(9))/(c^(5)))]:}

Find the numerical value of the log expression.\newlineloga=4logb=4logc=4loga9b9c5 \begin{array}{c} \log a=4 \quad \log b=4 \quad \log c=-4 \\ \log \frac{a^{9} b^{9}}{c^{5}} \end{array}

Full solution

Q. Find the numerical value of the log expression.\newlineloga=4logb=4logc=4loga9b9c5 \begin{array}{c} \log a=4 \quad \log b=4 \quad \log c=-4 \\ \log \frac{a^{9} b^{9}}{c^{5}} \end{array}
  1. Apply Power Rule: We are given the values of loga\log a, logb\log b, and logc\log c. We need to find the value of log(a9b9c5)\log\left(\frac{a^{9}b^{9}}{c^{5}}\right). To do this, we will use the properties of logarithms, specifically the power rule and the quotient rule.\newlinePower rule of logarithm: log(an)=nlog(a)\log(a^n) = n \cdot \log(a)\newlineQuotient rule of logarithm: log(ab)=log(a)log(b)\log\left(\frac{a}{b}\right) = \log(a) - \log(b)
  2. Substitute Given Values: First, let's apply the power rule to the expression log(a9b9)/(c5)\log(a^{9}b^{9})/(c^{5}).log(a9b9)/(c5)=log(a9)+log(b9)log(c5)\log(a^{9}b^{9})/(c^{5}) = \log(a^{9}) + \log(b^{9}) - \log(c^{5})Now we apply the power rule:log(a9)=9log(a)\log(a^{9}) = 9 \cdot \log(a)log(b9)=9log(b)\log(b^{9}) = 9 \cdot \log(b)log(c5)=5log(c)\log(c^{5}) = 5 \cdot \log(c)
  3. Perform Arithmetic Operations: Next, we substitute the given values of loga\log a, logb\log b, and logc\log c into the expression.log(a9)+log(b9)log(c5)=9×log(a)+9×log(b)5×log(c)=9×4+9×45×(4)\log(a^{9}) + \log(b^{9}) - \log(c^{5}) = 9 \times \log(a) + 9 \times \log(b) - 5 \times \log(c) = 9 \times 4 + 9 \times 4 - 5 \times (-4)
  4. Perform Arithmetic Operations: Next, we substitute the given values of loga\log a, logb\log b, and logc\log c into the expression.\newlinelog(a9)+log(b9)log(c5)=9log(a)+9log(b)5log(c)\log(a^{9}) + \log(b^{9}) - \log(c^{5}) = 9 \cdot \log(a) + 9 \cdot \log(b) - 5 \cdot \log(c)\newline=94+945(4)= 9 \cdot 4 + 9 \cdot 4 - 5 \cdot (-4) Now we perform the arithmetic operations.\newline=36+36+20= 36 + 36 + 20\newline=72+20= 72 + 20\newline=92= 92

More problems from Quotient property of logarithms