Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the following trigonometric values.
Express your answers exactly.

{:[cos(225^(@))=],[sin(225^(@))=]:}

Find the following trigonometric values.\newlineExpress your answers exactly.\newlinecos(225)=sin(225)= \begin{array}{l} \cos \left(225^{\circ}\right)= \\ \sin \left(225^{\circ}\right)= \end{array}

Full solution

Q. Find the following trigonometric values.\newlineExpress your answers exactly.\newlinecos(225)=sin(225)= \begin{array}{l} \cos \left(225^{\circ}\right)= \\ \sin \left(225^{\circ}\right)= \end{array}
  1. Recognizing the third quadrant: To find the exact values of cos(225)\cos(225^\circ) and sin(225)\sin(225^\circ), we need to recognize that 225225^\circ is in the third quadrant where both cosine and sine are negative. We can also use the reference angle of 4545^\circ because 225225^\circ is 180+45180^\circ + 45^\circ.
  2. Using the reference angle: The cosine and sine of 4545^\circ are known exact values. Since 225225^\circ is in the third quadrant, we will use the negative of these values.\newlinecos(45)=sin(45)=22\cos(45^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2}\newlineTherefore, cos(225)=cos(45)\cos(225^\circ) = -\cos(45^\circ) and sin(225)=sin(45)\sin(225^\circ) = -\sin(45^\circ).
  3. Calculating the exact values: Now we calculate the exact values using the reference angle:\newlinecos(225225 ^\circ ) = -cos(4545 ^\circ ) = -22 \frac{\sqrt{2}}{2} \newlinesin(225225 ^\circ ) = -sin(4545 ^\circ ) = -22 \frac{\sqrt{2}}{2}

More problems from Evaluate exponential functions