Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr4)(x^(3)-4x^(2))/(x^(2)-16).
Choose 1 answer:
(A) 2
(B) 1
(c) -4
(D) The limit doesn't exist

Find limx4x34x2x216 \lim _{x \rightarrow 4} \frac{x^{3}-4 x^{2}}{x^{2}-16} .\newlineChoose 11 answer:\newline(A) 22\newline(B) 11\newline(C) 4-4\newline(D) The limit doesn't exist

Full solution

Q. Find limx4x34x2x216 \lim _{x \rightarrow 4} \frac{x^{3}-4 x^{2}}{x^{2}-16} .\newlineChoose 11 answer:\newline(A) 22\newline(B) 11\newline(C) 4-4\newline(D) The limit doesn't exist
  1. Identify Function and Point: Identify the function and the point at which we need to find the limit. The function is (x34x2)/(x216)(x^3 - 4x^2) / (x^2 - 16) and we need to find the limit as xx approaches 44.
  2. Attempt Direct Substitution: Attempt to directly substitute x=4x = 4 into the function to see if the limit can be evaluated this way.\newlineSubstitute x=4x = 4 into (x34x2)/(x216)(x^3 - 4x^2) / (x^2 - 16) to check if the function is defined at this point.\newline((4)34(4)2)/((4)216)=(6464)/(1616)=0/0((4)^3 - 4(4)^2) / ((4)^2 - 16) = (64 - 64) / (16 - 16) = 0 / 0\newlineWe get an indeterminate form 0/00 / 0, which means we cannot directly evaluate the limit by substitution.
  3. Factor and Simplify Expression: Factor the numerator and denominator to simplify the expression and potentially cancel out common factors.\newlineThe numerator x34x2x^3 - 4x^2 can be factored as x2(x4)x^2(x - 4).\newlineThe denominator x216x^2 - 16 can be factored as (x+4)(x4)(x + 4)(x - 4).\newlineNow the function is (x2(x4))/((x+4)(x4))(x^2(x - 4)) / ((x + 4)(x - 4)).
  4. Cancel Common Factor: Cancel out the common factor (x4)(x - 4) from the numerator and denominator.\newlineAfter canceling, the function simplifies to x2(x+4)\frac{x^2}{(x + 4)}.
  5. Evaluate Limit: Now that the function is simplified, try to directly substitute x=4x = 4 again.\newlineSubstitute x=4x = 4 into x2x+4\frac{x^2}{x + 4} to evaluate the limit.\newline(4)24+4=168=2\frac{(4)^2}{4 + 4} = \frac{16}{8} = 2\newlineThe limit as xx approaches 44 is 22.

More problems from Evaluate exponential functions