Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find
lim
h
→
0
2
tan
(
π
3
+
h
)
−
2
tan
(
π
3
)
h
\lim _{h \rightarrow 0} \frac{2 \tan \left(\frac{\pi}{3}+h\right)-2 \tan \left(\frac{\pi}{3}\right)}{h}
lim
h
→
0
h
2
t
a
n
(
3
π
+
h
)
−
2
t
a
n
(
3
π
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
8
8
8
\newline
(D) The limit doesn't exist
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of logarithmic functions
Full solution
Q.
Find
lim
h
→
0
2
tan
(
π
3
+
h
)
−
2
tan
(
π
3
)
h
\lim _{h \rightarrow 0} \frac{2 \tan \left(\frac{\pi}{3}+h\right)-2 \tan \left(\frac{\pi}{3}\right)}{h}
lim
h
→
0
h
2
t
a
n
(
3
π
+
h
)
−
2
t
a
n
(
3
π
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
8
8
8
\newline
(D) The limit doesn't exist
Identify Problem:
Identify the limit problem and recognize it as a derivative problem at a specific point.
Use Derivative Definition:
Use the definition of the derivative
f
′
(
a
)
=
lim
h
→
0
f
(
a
+
h
)
−
f
(
a
)
h
f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}
f
′
(
a
)
=
lim
h
→
0
h
f
(
a
+
h
)
−
f
(
a
)
for the function
f
(
x
)
=
2
tan
(
x
)
f(x) = 2\tan(x)
f
(
x
)
=
2
tan
(
x
)
at
x
=
π
3
x = \frac{\pi}{3}
x
=
3
π
.
Plug in Values:
Plug in the values into the derivative formula:
f
′
(
π
3
)
=
lim
h
→
0
(
2
tan
(
π
3
+
h
)
−
2
tan
(
π
3
)
h
)
.
f'(\frac{\pi}{3}) = \lim_{h \to 0}\left(\frac{2\tan(\frac{\pi}{3}+h)-2\tan(\frac{\pi}{3})}{h}\right).
f
′
(
3
π
)
=
lim
h
→
0
(
h
2
t
a
n
(
3
π
+
h
)
−
2
t
a
n
(
3
π
)
)
.
Simplify Expression:
Simplify the expression inside the limit:
2
tan
(
π
3
+
h
)
−
2
tan
(
π
3
)
=
2
(
tan
(
π
3
+
h
)
−
tan
(
π
3
)
)
2\tan(\frac{\pi}{3}+h)-2\tan(\frac{\pi}{3}) = 2(\tan(\frac{\pi}{3}+h)-\tan(\frac{\pi}{3}))
2
tan
(
3
π
+
h
)
−
2
tan
(
3
π
)
=
2
(
tan
(
3
π
+
h
)
−
tan
(
3
π
))
.
Apply Tangent Formula:
Apply the tangent addition formula:
tan
(
a
+
b
)
=
tan
(
a
)
+
tan
(
b
)
1
−
tan
(
a
)
tan
(
b
)
\tan(a+b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}
tan
(
a
+
b
)
=
1
−
t
a
n
(
a
)
t
a
n
(
b
)
t
a
n
(
a
)
+
t
a
n
(
b
)
, where
a
=
π
3
a = \frac{\pi}{3}
a
=
3
π
and
b
=
h
b = h
b
=
h
.
Substitute Values:
Substitute
tan
(
π
3
)
=
3
\tan(\frac{\pi}{3}) = \sqrt{3}
tan
(
3
π
)
=
3
into the formula:
tan
(
π
3
+
h
)
=
3
+
tan
(
h
)
1
−
3
tan
(
h
)
\tan(\frac{\pi}{3}+h) = \frac{\sqrt{3}+\tan(h)}{1-\sqrt{3}\tan(h)}
tan
(
3
π
+
h
)
=
1
−
3
t
a
n
(
h
)
3
+
t
a
n
(
h
)
.
Plug Expression Back:
Plug the expression for
tan
(
π
3
+
h
)
\tan(\frac{\pi}{3}+h)
tan
(
3
π
+
h
)
back into the limit:
lim
h
→
0
(
2
(
3
+
tan
(
h
)
)
1
−
3
tan
(
h
)
−
3
)
/
h
\lim_{h \to 0}\left(\frac{2\left(\sqrt{3}+\tan(h)\right)}{1-\sqrt{3}\tan(h)}-\sqrt{3}\right)/h
lim
h
→
0
(
1
−
3
t
a
n
(
h
)
2
(
3
+
t
a
n
(
h
)
)
−
3
)
/
h
.
Simplify Inside Limit:
Simplify the expression inside the limit:
2
(
3
+
tan
(
h
)
)
1
−
3
tan
(
h
)
−
2
3
\frac{2(\sqrt{3}+\tan(h))}{1-\sqrt{3}\tan(h)}-2\sqrt{3}
1
−
3
t
a
n
(
h
)
2
(
3
+
t
a
n
(
h
))
−
2
3
/h =
2
(
tan
(
h
)
1
−
3
tan
(
h
)
)
/
h
2\left(\frac{\tan(h)}{1-\sqrt{3}\tan(h)}\right)/h
2
(
1
−
3
t
a
n
(
h
)
t
a
n
(
h
)
)
/
h
.
Divide by h:
Divide by h inside the limit:
lim
h
→
0
(
2
tan
(
h
)
(
1
−
3
tan
(
h
)
)
h
)
\lim_{h \to 0}\left(\frac{2\tan(h)}{(1-\sqrt{3}\tan(h))h}\right)
lim
h
→
0
(
(
1
−
3
t
a
n
(
h
))
h
2
t
a
n
(
h
)
)
.
Recognize Approach:
Recognize that as
h
h
h
approaches
0
0
0
,
tan
(
h
)
h
\frac{\tan(h)}{h}
h
t
a
n
(
h
)
approaches
1
1
1
.
Substitute in Limit:
Substitute
tan
(
h
)
/
h
\tan(h)/h
tan
(
h
)
/
h
with
1
1
1
in the limit:
lim
h
→
0
(
2
1
−
3
tan
(
h
)
)
\lim_{h \to 0}\left(\frac{2}{1-\sqrt{3}\tan(h)}\right)
lim
h
→
0
(
1
−
3
t
a
n
(
h
)
2
)
.
Evaluate Limit:
Evaluate the limit as
h
h
h
approaches
0
0
0
:
2
1
−
3
tan
(
0
)
=
2
1
−
0
=
2
\frac{2}{1-\sqrt{3}\tan(0)} = \frac{2}{1-0} = 2
1
−
3
t
a
n
(
0
)
2
=
1
−
0
2
=
2
.
Conclude Solution:
Conclude that the value of the limit is
2
2
2
, which corresponds to answer choice
(
B
)
(B)
(
B
)
.
More problems from Find derivatives of logarithmic functions
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant