Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(x^(2)-8x+65)dx.
Choose 1 answer:
(A) 
(1)/(7)arctan((x-4)/(7))+C
(B) 
(1)/(7)arcsin((x-4)/(7))+C
(C) 
arctan((x-4)/(7))+C
(D) 
arcsin((x-4)/(7))+C

Find 1x28x+65dx \int \frac{1}{x^{2}-8 x+65} d x .\newlineChoose 11 answer:\newline(A) 17arctan(x47)+C \frac{1}{7} \arctan \left(\frac{x-4}{7}\right)+C \newline(B) 17arcsin(x47)+C \frac{1}{7} \arcsin \left(\frac{x-4}{7}\right)+C \newline(C) arctan(x47)+C \arctan \left(\frac{x-4}{7}\right)+C \newline(D) arcsin(x47)+C \arcsin \left(\frac{x-4}{7}\right)+C

Full solution

Q. Find 1x28x+65dx \int \frac{1}{x^{2}-8 x+65} d x .\newlineChoose 11 answer:\newline(A) 17arctan(x47)+C \frac{1}{7} \arctan \left(\frac{x-4}{7}\right)+C \newline(B) 17arcsin(x47)+C \frac{1}{7} \arcsin \left(\frac{x-4}{7}\right)+C \newline(C) arctan(x47)+C \arctan \left(\frac{x-4}{7}\right)+C \newline(D) arcsin(x47)+C \arcsin \left(\frac{x-4}{7}\right)+C
  1. Complete the square: Complete the square for the denominator x28x+65x^2 - 8x + 65 to make it look like (xh)2+k2(x - h)^2 + k^2, which is suitable for a trigonometric substitution.\newline(x28x+16)+49=(x4)2+72(x^2 - 8x + 16) + 49 = (x - 4)^2 + 7^2
  2. Recognize standard form: Recognize that the integral is now in the form of 1((xh)2+k2)\frac{1}{((x - h)^2 + k^2)}, which is a standard form for arctan\arctan substitution.
  3. Use substitution uu: Use the substitution u=x47u = \frac{x - 4}{7}, then du=17dxdu = \frac{1}{7}dx.
  4. Rewrite integral in terms: Rewrite the integral in terms of uu: 1u2+17du\int \frac{1}{u^2 + 1} \cdot 7\,du.
  5. Integrate using arctan formula: Integrate using the arctan formula: 1u2+1du=arctan(u)+C\int \frac{1}{u^2 + 1}\,du = \arctan(u) + C.
  6. Substitute back for x: Substitute back for x to get the final answer: (17)arctan((x4)7)+C(\frac{1}{7})\arctan(\frac{(x - 4)}{7}) + C.

More problems from Find derivatives of using multiple formulae