Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(6x^(2)+36 x+78)dx.
Choose 1 answer:
(A) 
(1)/(2)arctan((x+3)/(2))+C
(B) 
(1)/(2)arcsin((x+3)/(2))+C
(C) 
(1)/(12)arcsin((x+3)/(2))+C
(D) 
(1)/(12)arctan((x+3)/(2))+C

Find 16x2+36x+78dx \int \frac{1}{6 x^{2}+36 x+78} d x .\newlineChoose 11 answer:\newline(A) 12arctan(x+32)+C \frac{1}{2} \arctan \left(\frac{x+3}{2}\right)+C \newline(B) 12arcsin(x+32)+C \frac{1}{2} \arcsin \left(\frac{x+3}{2}\right)+C \newline(C) 112arcsin(x+32)+C \frac{1}{12} \arcsin \left(\frac{x+3}{2}\right)+C \newline(D) 112arctan(x+32)+C \frac{1}{12} \arctan \left(\frac{x+3}{2}\right)+C

Full solution

Q. Find 16x2+36x+78dx \int \frac{1}{6 x^{2}+36 x+78} d x .\newlineChoose 11 answer:\newline(A) 12arctan(x+32)+C \frac{1}{2} \arctan \left(\frac{x+3}{2}\right)+C \newline(B) 12arcsin(x+32)+C \frac{1}{2} \arcsin \left(\frac{x+3}{2}\right)+C \newline(C) 112arcsin(x+32)+C \frac{1}{12} \arcsin \left(\frac{x+3}{2}\right)+C \newline(D) 112arctan(x+32)+C \frac{1}{12} \arctan \left(\frac{x+3}{2}\right)+C
  1. Complete the Square: First, complete the square for the quadratic in the denominator.\newline6x2+36x+78=6(x2+6x+13)6x^2 + 36x + 78 = 6(x^2 + 6x + 13)\newlineNow, complete the square for x2+6x+13x^2 + 6x + 13.\newlinex2+6x+13=(x+3)2+4x^2 + 6x + 13 = (x + 3)^2 + 4\newlineSo, 6x2+36x+78=6((x+3)2+4)6x^2 + 36x + 78 = 6((x + 3)^2 + 4)
  2. Factor Out and Simplify: Next, factor out the 66 from the denominator to simplify the integral.\newline16x2+36x+78dx=16((x+3)2+4)dx\int \frac{1}{6x^2 + 36x + 78}\,dx = \int \frac{1}{6((x + 3)^2 + 4)}\,dx\newline=16×1(x+3)2+4dx= \frac{1}{6} \times \int \frac{1}{(x + 3)^2 + 4}\,dx
  3. Make Substitution: Now, let's make a substitution to make the integral look like the standard arctan integral form.\newlineLet u=x+3u = x + 3, then du=dxdu = dx.\newlineThe integral becomes (16)1u2+4du(\frac{1}{6}) \int \frac{1}{u^2 + 4}du.
  4. Apply Arctan Integral Formula: The integral of 1u2+a2\frac{1}{{u^2 + a^2}} is 1aarctan(ua)+C\frac{1}{a} \cdot \text{arctan}\left(\frac{u}{a}\right) + C. Here, a2=4a^2 = 4, so a=2a = 2. The integral becomes 1612arctan(u2)+C\frac{1}{6} \cdot \frac{1}{2} \cdot \text{arctan}\left(\frac{u}{2}\right) + C.
  5. Substitute Back: Substitute back for uu to get the integral in terms of xx.16×12×arctan(x+32)+C=112×arctan(x+32)+C\frac{1}{6} \times \frac{1}{2} \times \text{arctan}\left(\frac{x + 3}{2}\right) + C = \frac{1}{12} \times \text{arctan}\left(\frac{x + 3}{2}\right) + C.
  6. Check Answer Choices: Check the answer choices to see which one matches our result.\newlineThe correct answer is (D) (112)arctan(x+32)+C(\frac{1}{12})\arctan\left(\frac{x+3}{2}\right)+C.

More problems from Find derivatives of using multiple formulae