Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find
∫
1
5
x
2
−
20
x
+
100
d
x
\int \frac{1}{5 x^{2}-20 x+100} d x
∫
5
x
2
−
20
x
+
100
1
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
arctan
(
x
−
2
4
)
+
C
\arctan \left(\frac{x-2}{4}\right)+C
arctan
(
4
x
−
2
)
+
C
\newline
(B)
arcsin
(
x
−
2
4
)
+
C
\arcsin \left(\frac{x-2}{4}\right)+C
arcsin
(
4
x
−
2
)
+
C
\newline
(c)
1
20
arcsin
(
x
−
2
4
)
+
C
\frac{1}{20} \arcsin \left(\frac{x-2}{4}\right)+C
20
1
arcsin
(
4
x
−
2
)
+
C
\newline
(D)
1
20
arctan
(
x
−
2
4
)
+
C
\frac{1}{20} \arctan \left(\frac{x-2}{4}\right)+C
20
1
arctan
(
4
x
−
2
)
+
C
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
Find
∫
1
5
x
2
−
20
x
+
100
d
x
\int \frac{1}{5 x^{2}-20 x+100} d x
∫
5
x
2
−
20
x
+
100
1
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
arctan
(
x
−
2
4
)
+
C
\arctan \left(\frac{x-2}{4}\right)+C
arctan
(
4
x
−
2
)
+
C
\newline
(B)
arcsin
(
x
−
2
4
)
+
C
\arcsin \left(\frac{x-2}{4}\right)+C
arcsin
(
4
x
−
2
)
+
C
\newline
(c)
1
20
arcsin
(
x
−
2
4
)
+
C
\frac{1}{20} \arcsin \left(\frac{x-2}{4}\right)+C
20
1
arcsin
(
4
x
−
2
)
+
C
\newline
(D)
1
20
arctan
(
x
−
2
4
)
+
C
\frac{1}{20} \arctan \left(\frac{x-2}{4}\right)+C
20
1
arctan
(
4
x
−
2
)
+
C
Rewrite Quadratic Denominator:
Rewrite the quadratic in the denominator to
complete the square
:
5
(
x
2
−
4
x
+
20
)
5(x^2 - 4x + 20)
5
(
x
2
−
4
x
+
20
)
.
Complete Square:
Complete the square for the expression
x
2
−
4
x
+
20
x^2 - 4x + 20
x
2
−
4
x
+
20
by adding and subtracting
(
4
2
)
2
=
4
(\frac{4}{2})^2 = 4
(
2
4
)
2
=
4
inside the parenthesis:
5
(
(
x
2
−
4
x
+
4
)
+
16
)
5((x^2 - 4x + 4) + 16)
5
((
x
2
−
4
x
+
4
)
+
16
)
.
Factor Out Constant:
Factor out the
5
5
5
and rewrite the expression as
5
(
(
x
−
2
)
2
+
16
)
5((x - 2)^2 + 16)
5
((
x
−
2
)
2
+
16
)
.
Standard Form Integral:
Now the integral looks like
∫
1
5
(
(
x
−
2
)
2
+
16
)
d
x
\int \frac{1}{5((x-2)^2+16)}dx
∫
5
((
x
−
2
)
2
+
16
)
1
d
x
, which is a standard form for the arctangent function derivative.
Pull Out Constant:
Pull out the constant
1
5
\frac{1}{5}
5
1
from the integral:
(
1
5
)
⋅
∫
1
(
x
−
2
)
2
+
16
d
x
\left(\frac{1}{5}\right) \cdot \int \frac{1}{(x-2)^2+16}\,dx
(
5
1
)
⋅
∫
(
x
−
2
)
2
+
16
1
d
x
.
Recognize Integral Form:
Recognize that the integral is now in the form of
∫
1
a
2
+
u
2
d
u
\int \frac{1}{a^2 + u^2} \, du
∫
a
2
+
u
2
1
d
u
, which is
1
a
⋅
arctan
(
u
a
)
+
C
\frac{1}{a} \cdot \arctan(\frac{u}{a}) + C
a
1
⋅
arctan
(
a
u
)
+
C
.
Substitute Constants:
In our case,
a
=
4
a = 4
a
=
4
and
u
=
x
−
2
u = x - 2
u
=
x
−
2
. So the integral becomes
(
1
/
5
)
×
(
1
/
4
)
×
arctan
(
(
x
−
2
)
/
4
)
+
C
(1/5) \times (1/4) \times \arctan((x-2)/4) + C
(
1/5
)
×
(
1/4
)
×
arctan
((
x
−
2
)
/4
)
+
C
.
Simplify Constants:
Simplify the constants:
(
1
20
)
⋅
arctan
(
x
−
2
4
)
+
C
(\frac{1}{20}) \cdot \arctan(\frac{x-2}{4}) + C
(
20
1
)
⋅
arctan
(
4
x
−
2
)
+
C
.
More problems from Find derivatives of using multiple formulae
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant