Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(5x^(2)-20 x+100)dx.
Choose 1 answer:
(A) 
arctan((x-2)/(4))+C
(B) 
arcsin((x-2)/(4))+C
(c) 
(1)/(20)arcsin((x-2)/(4))+C
(D) 
(1)/(20)arctan((x-2)/(4))+C

Find 15x220x+100dx \int \frac{1}{5 x^{2}-20 x+100} d x .\newlineChoose 11 answer:\newline(A) arctan(x24)+C \arctan \left(\frac{x-2}{4}\right)+C \newline(B) arcsin(x24)+C \arcsin \left(\frac{x-2}{4}\right)+C \newline(c) 120arcsin(x24)+C \frac{1}{20} \arcsin \left(\frac{x-2}{4}\right)+C \newline(D) 120arctan(x24)+C \frac{1}{20} \arctan \left(\frac{x-2}{4}\right)+C

Full solution

Q. Find 15x220x+100dx \int \frac{1}{5 x^{2}-20 x+100} d x .\newlineChoose 11 answer:\newline(A) arctan(x24)+C \arctan \left(\frac{x-2}{4}\right)+C \newline(B) arcsin(x24)+C \arcsin \left(\frac{x-2}{4}\right)+C \newline(c) 120arcsin(x24)+C \frac{1}{20} \arcsin \left(\frac{x-2}{4}\right)+C \newline(D) 120arctan(x24)+C \frac{1}{20} \arctan \left(\frac{x-2}{4}\right)+C
  1. Rewrite Quadratic Denominator: Rewrite the quadratic in the denominator to complete the square: 5(x24x+20)5(x^2 - 4x + 20).
  2. Complete Square: Complete the square for the expression x24x+20x^2 - 4x + 20 by adding and subtracting (42)2=4(\frac{4}{2})^2 = 4 inside the parenthesis: 5((x24x+4)+16)5((x^2 - 4x + 4) + 16).
  3. Factor Out Constant: Factor out the 55 and rewrite the expression as 5((x2)2+16)5((x - 2)^2 + 16).
  4. Standard Form Integral: Now the integral looks like 15((x2)2+16)dx\int \frac{1}{5((x-2)^2+16)}dx, which is a standard form for the arctangent function derivative.
  5. Pull Out Constant: Pull out the constant 15\frac{1}{5} from the integral: (15)1(x2)2+16dx\left(\frac{1}{5}\right) \cdot \int \frac{1}{(x-2)^2+16}\,dx.
  6. Recognize Integral Form: Recognize that the integral is now in the form of 1a2+u2du\int \frac{1}{a^2 + u^2} \, du, which is 1aarctan(ua)+C\frac{1}{a} \cdot \arctan(\frac{u}{a}) + C.
  7. Substitute Constants: In our case, a=4a = 4 and u=x2u = x - 2. So the integral becomes (1/5)×(1/4)×arctan((x2)/4)+C(1/5) \times (1/4) \times \arctan((x-2)/4) + C.
  8. Simplify Constants: Simplify the constants: (120)arctan(x24)+C(\frac{1}{20}) \cdot \arctan(\frac{x-2}{4}) + C.

More problems from Find derivatives of using multiple formulae