Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(4x^(2)+48 x+148)dx.
Choose 1 answer:
(A) 
(1)/(4)arcsin(x+6)+C
(B) 
(1)/(4)arcsin((x+6)/(4))+C
(C) 
(1)/(4)arctan(x+6)+C
(D) 
(1)/(4)arctan((x+6)/(4))+C

Find 14x2+48x+148dx \int \frac{1}{4 x^{2}+48 x+148} d x .\newlineChoose 11 answer:\newline(A) 14arcsin(x+6)+C \frac{1}{4} \arcsin (x+6)+C \newline(B) 14arcsin(x+64)+C \frac{1}{4} \arcsin \left(\frac{x+6}{4}\right)+C \newline(C) 14arctan(x+6)+C \frac{1}{4} \arctan (x+6)+C \newline(D) 14arctan(x+64)+C \frac{1}{4} \arctan \left(\frac{x+6}{4}\right)+C

Full solution

Q. Find 14x2+48x+148dx \int \frac{1}{4 x^{2}+48 x+148} d x .\newlineChoose 11 answer:\newline(A) 14arcsin(x+6)+C \frac{1}{4} \arcsin (x+6)+C \newline(B) 14arcsin(x+64)+C \frac{1}{4} \arcsin \left(\frac{x+6}{4}\right)+C \newline(C) 14arctan(x+6)+C \frac{1}{4} \arctan (x+6)+C \newline(D) 14arctan(x+64)+C \frac{1}{4} \arctan \left(\frac{x+6}{4}\right)+C
  1. Complete the Square: First, complete the square for the quadratic in the denominator.\newline4x2+48x+1484x^2 + 48x + 148 can be written as (2x)2+22x6+62+(14836)(2x)^2 + 2\cdot2x\cdot6 + 6^2 + (148 - 36).\newlineThis simplifies to (2x+6)2+112(2x + 6)^2 + 112.
  2. Rewrite with Completed Square: Now, rewrite the integral with the completed square.\newline14x2+48x+148dx=1(2x+6)2+112dx\int\frac{1}{4x^2 + 48x + 148}\,dx = \int\frac{1}{(2x + 6)^2 + 112}\,dx.
  3. Factor Out 44: Factor out the 44 from the denominator to match the form of the arctan integral.\newline1(2x+6)2+112dx=14((x+3)2+28)dx.\int \frac{1}{(2x + 6)^2 + 112}\,dx = \int \frac{1}{4((x + 3)^2 + 28)}\,dx.
  4. Recognize Integral Form: Recognize that the integral is now in the form of 1a2+u2du\int \frac{1}{a^2 + u^2}\,du, which is 1aarctan(ua)+C\frac{1}{a} \arctan(\frac{u}{a}) + C. Here, a2=28a^2 = 28 and u=x+3u = x + 3, so a=28=27a = \sqrt{28} = 2\sqrt{7}.
  5. Calculate Integral: Calculate the integral using the arctan formula. 14((x+3)2+28)dx=1427arctan(x+327)+C\int \frac{1}{4((x + 3)^2 + 28)}dx = \frac{1}{4\cdot 2\sqrt{7}} \cdot \arctan\left(\frac{x + 3}{2\sqrt{7}}\right) + C.
  6. Simplify Constant: Simplify the constant in front of the arctan. \newline1427\frac{1}{4\cdot 2\sqrt{7}} simplifies to 187\frac{1}{8\sqrt{7}}.\newlineHowever, this is a mistake because we should not simplify the constant yet as it is part of the standard arctan integral form.

More problems from Find derivatives of using multiple formulae