Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(2x^(2)-4x+20)dx.
Choose 1 answer:
(A) 
(1)/(3)arctan((x-1)/(3))+C
(B) 
(1)/(6)arcsin((x-1)/(3))+C
(C) 
(1)/(6)arctan((x-1)/(3))+C
(D) 
(1)/(3)arcsin((x-1)/(3))+C

Find 12x24x+20dx \int \frac{1}{2 x^{2}-4 x+20} d x .\newlineChoose 11 answer:\newline(A) 13arctan(x13)+C \frac{1}{3} \arctan \left(\frac{x-1}{3}\right)+C \newline(B) 16arcsin(x13)+C \frac{1}{6} \arcsin \left(\frac{x-1}{3}\right)+C \newline(C) 16arctan(x13)+C \frac{1}{6} \arctan \left(\frac{x-1}{3}\right)+C \newline(D) 13arcsin(x13)+C \frac{1}{3} \arcsin \left(\frac{x-1}{3}\right)+C

Full solution

Q. Find 12x24x+20dx \int \frac{1}{2 x^{2}-4 x+20} d x .\newlineChoose 11 answer:\newline(A) 13arctan(x13)+C \frac{1}{3} \arctan \left(\frac{x-1}{3}\right)+C \newline(B) 16arcsin(x13)+C \frac{1}{6} \arcsin \left(\frac{x-1}{3}\right)+C \newline(C) 16arctan(x13)+C \frac{1}{6} \arctan \left(\frac{x-1}{3}\right)+C \newline(D) 13arcsin(x13)+C \frac{1}{3} \arcsin \left(\frac{x-1}{3}\right)+C
  1. Complete the Square: First, complete the square for the quadratic in the denominator.\newline2x24x+20=2(x22x+10)2x^2 - 4x + 20 = 2(x^2 - 2x + 10)\newlineNow, to complete the square, we need to add and subtract (b/2)2(b/2)^2 where bb is the coefficient of xx.\newlineSo, (b/2)2=(2/2)2=1(b/2)^2 = (2/2)^2 = 1.\newlineAdd and subtract 11 inside the parenthesis and factor out the 22.\newline2(x22x+1+9)=2((x1)2+9)2(x^2 - 2x + 1 + 9) = 2((x - 1)^2 + 9)
  2. Rewrite the Integral: Now, rewrite the integral with the completed square.\newline12x24x+20dx=12((x1)2+9)dx\int\frac{1}{2x^2 - 4x + 20} dx = \int\frac{1}{2((x - 1)^2 + 9)} dx\newlineSimplify the integral by taking out the constant.\newline=12×1(x1)2+9dx= \frac{1}{2} \times \int\frac{1}{(x - 1)^2 + 9} dx
  3. Recognize Arctan Formula: Recognize the integral as a form of the inverse tangent function, arctan(u)\arctan(u), where the integral of 1u2+a2du\frac{1}{u^2 + a^2} \, du is 1aarctan(ua)+C\frac{1}{a} \cdot \arctan\left(\frac{u}{a}\right) + C. Here, u=x1u = x - 1 and a2=9a^2 = 9, so a=3a = 3.
  4. Apply Arctan Formula: Apply the arctan formula.\newline(12)1(x1)2+9dx=(12)(13)arctan(x13)+C(\frac{1}{2}) \cdot \int \frac{1}{(x - 1)^2 + 9} dx = (\frac{1}{2}) \cdot (\frac{1}{3}) \cdot \arctan(\frac{x - 1}{3}) + C\newlineSimplify the constants.\newline=(16)arctan(x13)+C= (\frac{1}{6}) \cdot \arctan(\frac{x - 1}{3}) + C

More problems from Find derivatives of using multiple formulae