Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find
d
d
x
(
ln
(
x
)
e
x
)
\frac{d}{d x}\left(\ln (x) e^{x}\right)
d
x
d
(
ln
(
x
)
e
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
e
x
x
\frac{e^{x}}{x}
x
e
x
\newline
(B)
e
x
x
+
ln
(
x
)
\frac{e^{x}}{x}+\ln (x)
x
e
x
+
ln
(
x
)
\newline
(C)
1
x
+
e
x
\frac{1}{x}+e^{x}
x
1
+
e
x
\newline
(D)
e
x
(
1
x
+
ln
(
x
)
)
e^{x}\left(\frac{1}{x}+\ln (x)\right)
e
x
(
x
1
+
ln
(
x
)
)
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
Find
d
d
x
(
ln
(
x
)
e
x
)
\frac{d}{d x}\left(\ln (x) e^{x}\right)
d
x
d
(
ln
(
x
)
e
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
e
x
x
\frac{e^{x}}{x}
x
e
x
\newline
(B)
e
x
x
+
ln
(
x
)
\frac{e^{x}}{x}+\ln (x)
x
e
x
+
ln
(
x
)
\newline
(C)
1
x
+
e
x
\frac{1}{x}+e^{x}
x
1
+
e
x
\newline
(D)
e
x
(
1
x
+
ln
(
x
)
)
e^{x}\left(\frac{1}{x}+\ln (x)\right)
e
x
(
x
1
+
ln
(
x
)
)
Apply product rule:
Use the product rule for derivatives:
(
d
d
x
)
(
u
⋅
v
)
=
u
′
v
+
u
v
′
(\frac{d}{dx})(u\cdot v) = u'v + uv'
(
d
x
d
)
(
u
⋅
v
)
=
u
′
v
+
u
v
′
.
Identify
u
u
u
and
v
v
v
:
Let
u
=
ln
(
x
)
u = \ln(x)
u
=
ln
(
x
)
and
v
=
e
x
v = e^{x}
v
=
e
x
. Now find
u
′
u'
u
′
and
v
′
v'
v
′
.
Find derivatives:
The derivative of
ln
(
x
)
\ln(x)
ln
(
x
)
is
1
x
\frac{1}{x}
x
1
, so
u
′
=
1
x
u' = \frac{1}{x}
u
′
=
x
1
.
Use product rule:
The derivative of
e
x
e^{x}
e
x
is
e
x
e^{x}
e
x
, so
v
′
=
e
x
v' = e^{x}
v
′
=
e
x
.
Simplify expression:
Now apply the product rule:
(
d
d
x
)
(
ln
(
x
)
e
(
x
)
)
=
(
1
x
)
e
(
x
)
+
ln
(
x
)
e
(
x
)
.
(\frac{d}{dx})(\ln(x)e^{(x)}) = (\frac{1}{x})e^{(x)} + \ln(x)e^{(x)}.
(
d
x
d
)
(
ln
(
x
)
e
(
x
)
)
=
(
x
1
)
e
(
x
)
+
ln
(
x
)
e
(
x
)
.
Simplify expression:
Now apply the product rule:
(
d
d
x
)
(
ln
(
x
)
e
(
x
)
)
=
(
1
x
)
e
(
x
)
+
ln
(
x
)
e
(
x
)
.
(\frac{d}{dx})(\ln(x)e^{(x)}) = (\frac{1}{x})e^{(x)} + \ln(x)e^{(x)}.
(
d
x
d
)
(
ln
(
x
)
e
(
x
)
)
=
(
x
1
)
e
(
x
)
+
ln
(
x
)
e
(
x
)
.
Simplify the expression:
(
d
d
x
)
(
ln
(
x
)
e
(
x
)
)
=
e
(
x
)
x
+
ln
(
x
)
e
(
x
)
.
(\frac{d}{dx})(\ln(x)e^{(x)}) = \frac{e^{(x)}}{x} + \ln(x)e^{(x)}.
(
d
x
d
)
(
ln
(
x
)
e
(
x
)
)
=
x
e
(
x
)
+
ln
(
x
)
e
(
x
)
.
More problems from Find derivatives of using multiple formulae
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant