Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d)/(dx)([ln(x)]^(3)).
Choose 1 answer:
(A) 
3[ln(x)]^(2)
(B) 
3((1)/(x))^(2)
(C) 
(3[ln(x)]^(2))/(x)
(D) 
((1)/(x))^(3)

Find ddx([ln(x)]3) \frac{d}{d x}\left([\ln (x)]^{3}\right) .\newlineChoose 11 answer:\newline(A) 3[ln(x)]2 3[\ln (x)]^{2} \newline(B) 3(1x)2 3\left(\frac{1}{x}\right)^{2} \newline(C) 3[ln(x)]2x \frac{3[\ln (x)]^{2}}{x} \newline(D) (1x)3 \left(\frac{1}{x}\right)^{3}

Full solution

Q. Find ddx([ln(x)]3) \frac{d}{d x}\left([\ln (x)]^{3}\right) .\newlineChoose 11 answer:\newline(A) 3[ln(x)]2 3[\ln (x)]^{2} \newline(B) 3(1x)2 3\left(\frac{1}{x}\right)^{2} \newline(C) 3[ln(x)]2x \frac{3[\ln (x)]^{2}}{x} \newline(D) (1x)3 \left(\frac{1}{x}\right)^{3}
  1. Apply Chain Rule: Apply the chain rule to differentiate [ln(x)]3[\ln(x)]^{3}. The chain rule states that the derivative of a composite function f(g(x))f(g(x)) is f(g(x))g(x)f'(g(x))g'(x). In this case, f(u)=u3f(u) = u^{3} and g(x)=ln(x)g(x) = \ln(x), so we need to find the derivatives f(u)f'(u) and g(x)g'(x).
  2. Derivative of f(u)f(u): Find the derivative of f(u)=u3f(u) = u^3 with respect to uu. Using the power rule, ddu(un)=nun1\frac{d}{du}(u^n) = nu^{n-1}, we get: ddu(u3)=3u31=3u2\frac{d}{du}(u^3) = 3u^{3-1} = 3u^2.
  3. Derivative of g(x)g(x): Find the derivative of g(x)=ln(x)g(x) = \ln(x) with respect to xx. The derivative of ln(x)\ln(x) with respect to xx is 1x\frac{1}{x}.
  4. Apply Chain Rule: Apply the chain rule using the derivatives from steps 22 and 33.\newline(ddx)([ln(x)]3)=f(g(x))g(x)=3[ln(x)]2(1x).(\frac{d}{dx})([\ln(x)]^{3}) = f'(g(x))g'(x) = 3[\ln(x)]^2 \cdot (\frac{1}{x}).
  5. Simplify Expression: Simplify the expression.\newline(ddx)([ln(x)]3)=3[ln(x)]2x(\frac{d}{dx})([\ln(x)]^{3}) = \frac{3[\ln(x)]^2}{x}.\newlineThis matches answer choice (C).

More problems from Find derivatives of using multiple formulae