Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d)/(dx)([ln(x)]^(3)).
Choose 1 answer:
(A) 
3[ln(x)]^(2)
(B) 
((1)/(x))^(3)
(c) 
3((1)/(x))^(2)
(D) 
(3[ln(x)]^(2))/(x)

Find ddx([ln(x)]3) \frac{d}{d x}\left([\ln (x)]^{3}\right) .\newlineChoose 11 answer:\newline(A) 3[ln(x)]2 3[\ln (x)]^{2} \newline(B) (1x)3 \left(\frac{1}{x}\right)^{3} \newline(c) 3(1x)2 3\left(\frac{1}{x}\right)^{2} \newline(D) 3[ln(x)]2x \frac{3[\ln (x)]^{2}}{x}

Full solution

Q. Find ddx([ln(x)]3) \frac{d}{d x}\left([\ln (x)]^{3}\right) .\newlineChoose 11 answer:\newline(A) 3[ln(x)]2 3[\ln (x)]^{2} \newline(B) (1x)3 \left(\frac{1}{x}\right)^{3} \newline(c) 3(1x)2 3\left(\frac{1}{x}\right)^{2} \newline(D) 3[ln(x)]2x \frac{3[\ln (x)]^{2}}{x}
  1. Apply Chain Rule Derivative: Apply the chain rule to find the derivative of (ln(x))3(\ln(x))^3. The chain rule states that the derivative of a composite function f(g(x))f(g(x)) is f(g(x))g(x)f'(g(x))g'(x). In this case, f(u)=u3f(u) = u^3 and g(x)=ln(x)g(x) = \ln(x), so we need to find the derivatives f(u)f'(u) and g(x)g'(x).
  2. Find Derivative of u3u^3: Find the derivative of f(u)=u3f(u) = u^3 with respect to uu. Using the power rule, (ddu)(un)=nu(n1)(\frac{d}{du})(u^n) = nu^{(n-1)}, we get: (ddu)(u3)=3u(31)=3u2(\frac{d}{du})(u^3) = 3u^{(3-1)} = 3u^2.
  3. Find Derivative of ln(x)\ln(x): Find the derivative of g(x)=ln(x)g(x) = \ln(x) with respect to xx. The derivative of ln(x)\ln(x) with respect to xx is 1x\frac{1}{x}.
  4. Apply Chain Rule: Apply the chain rule using the derivatives from steps 22 and 33.\newline(ddx)([ln(x)]3)=f(g(x))g(x)=3[ln(x)]2(1x).(\frac{d}{dx})([\ln(x)]^3) = f'(g(x))g'(x) = 3[\ln(x)]^2 \cdot (\frac{1}{x}).
  5. Simplify Expression: Simplify the expression.\newline(ddx)([ln(x)]3)=3[ln(x)]2x(\frac{d}{dx})([\ln(x)]^3) = \frac{3[\ln(x)]^2}{x}.

More problems from Find derivatives of using multiple formulae