Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d)/(dx)((e^(x))/(sqrtx)).
Choose 1 answer:
(A) 
e^(x)(sqrtx-(1)/(2sqrtx))
(B) 
2sqrtxe^(x)
(C) 
e^(x)(sqrtx-(1)/(2sqrtx))
(D) 
e^(x)-(1)/(2sqrtx)

Find ddx(exx) \frac{d}{d x}\left(\frac{e^{x}}{\sqrt{x}}\right) .\newlineChoose 11 answer:\newline(A) ex(x12x) e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right) \newline(B) 2xex 2 \sqrt{x} e^{x} \newline(C) ex(x12x) e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right) \newline(D) ex12x e^{x}-\frac{1}{2 \sqrt{x}}

Full solution

Q. Find ddx(exx) \frac{d}{d x}\left(\frac{e^{x}}{\sqrt{x}}\right) .\newlineChoose 11 answer:\newline(A) ex(x12x) e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right) \newline(B) 2xex 2 \sqrt{x} e^{x} \newline(C) ex(x12x) e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right) \newline(D) ex12x e^{x}-\frac{1}{2 \sqrt{x}}
  1. Apply Quotient Rule: Apply the quotient rule for differentiation, which states that the derivative of a function f(x)/g(x)f(x)/g(x) is given by (f(x)g(x)f(x)g(x))/(g(x))2(f'(x)g(x) - f(x)g'(x))/(g(x))^2. Let f(x)=exf(x) = e^x and g(x)=x=x(1/2)g(x) = \sqrt{x} = x^{(1/2)}. We need to find f(x)f'(x) and g(x)g'(x).
  2. Find f(x)f'(x): Find the derivative of f(x)=exf(x) = e^x with respect to xx. The derivative of exe^x with respect to xx is exe^x. So, f(x)=exf'(x) = e^x.
  3. Find g(x)g'(x): Find the derivative of g(x)=x12g(x) = x^{\frac{1}{2}} with respect to xx. Using the power rule, ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1}, we get: g(x)=12x121=12x12=12(1x)g'(x) = \frac{1}{2}x^{\frac{1}{2} - 1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2}(\frac{1}{\sqrt{x}}).
  4. Apply Quotient Rule: Apply the quotient rule using the derivatives from steps 22 and 33.\newline(ddx)(exx)=ex(12)(1x)ex(1x)(x12)2(\frac{d}{dx})\left(\frac{e^x}{\sqrt{x}}\right) = \frac{e^x \cdot (\frac{1}{2})(\frac{1}{\sqrt{x}}) - e^x \cdot (\frac{1}{\sqrt{x}})}{(x^{\frac{1}{2}})^2}.
  5. Simplify Expression: Simplify the expression. (ddx)(exx)=ex2xexx)x(\frac{d}{dx})(\frac{e^x}{\sqrt{x}}) = \frac{e^x}{2\sqrt{x}} - \frac{e^x}{\sqrt{x}})\over{x}.
  6. Combine Terms: Combine the terms in the numerator and simplify the denominator.\newline(\frac{d}{dx})\left(\frac{e^x}{\sqrt{x}}\right) = \frac{\frac{e^x}{\(2\)\sqrt{x}} - \frac{\(2\)e^x}{\(2\)\sqrt{x}}}{x^{\frac{\(1\)}{\(2\)}}^\(2\)}.\(\newline(\frac{d}{dx})\left(\frac{e^x}{\sqrt{x}}\right) = \frac{-\frac{e^x}{\(2\)\sqrt{x}}}{x}.
  7. Simplify Denominator: Simplify the complex fraction. \((\frac{d}{dx})\left(\frac{e^x}{\sqrt{x}}\right) = -\frac{e^x}{2x^{\frac{3}{2}}}.
  8. Simplify Complex Fraction: Notice that none of the answer choices match the simplified derivative we found. There must be a mistake in the previous steps. Let's go back and check our calculations.

More problems from Find derivatives of using multiple formulae