Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d)/(dx)((e^(x))/(sqrtx)).
Choose 1 answer:
(A) 
e^(x)-(1)/(2sqrtx)
(B) 
(e^(x)(sqrtx-(1)/(2sqrtx)))/(x)
(C) 
2sqrtxe^(x)
(D) 
e^(x)(sqrtx-(1)/(2sqrtx))

Find ddx(exx) \frac{d}{d x}\left(\frac{e^{x}}{\sqrt{x}}\right) .\newlineChoose 11 answer:\newline(A) ex12x e^{x}-\frac{1}{2 \sqrt{x}} \newline(B) ex(x12x)x \frac{e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right)}{x} \newline(C) 2xex 2 \sqrt{x} e^{x} \newline(D) ex(x12x) e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right)

Full solution

Q. Find ddx(exx) \frac{d}{d x}\left(\frac{e^{x}}{\sqrt{x}}\right) .\newlineChoose 11 answer:\newline(A) ex12x e^{x}-\frac{1}{2 \sqrt{x}} \newline(B) ex(x12x)x \frac{e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right)}{x} \newline(C) 2xex 2 \sqrt{x} e^{x} \newline(D) ex(x12x) e^{x}\left(\sqrt{x}-\frac{1}{2 \sqrt{x}}\right)
  1. Apply Quotient Rule: Apply the quotient rule for differentiation, which states that the derivative of a function h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)} is given by h(x)=g(x)f(x)f(x)g(x)(g(x))2h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}. Let f(x)=exf(x) = e^x and g(x)=xg(x) = \sqrt{x}, so we need to find f(x)f'(x) and g(x)g'(x).
  2. Find f(x)f'(x): Find the derivative of f(x)=exf(x) = e^x with respect to xx. The derivative of exe^x with respect to xx is exe^x. So, f(x)=exf'(x) = e^x.
  3. Find g(x)g'(x): Find the derivative of g(x)=xg(x) = \sqrt{x} with respect to xx. The derivative of x\sqrt{x} is (1/2)x(1/2)(1/2)x^{(-1/2)}. So, g(x)=(1/2)x(1/2)=1/(2x)g'(x) = (1/2)x^{(-1/2)} = 1/(2\sqrt{x}).
  4. Apply Quotient Rule: Apply the quotient rule using the derivatives from steps 22 and 33.\newlineh(x)=g(x)f(x)f(x)g(x)(g(x))2h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}\newlineh(x)=xexex(12x)(x)2h'(x) = \frac{\sqrt{x}e^x - e^x(\frac{1}{2\sqrt{x}})}{(\sqrt{x})^2}
  5. Simplify Expression: Simplify the expression.\newlineh(x)=xexex2xxh'(x) = \frac{\sqrt{x}e^x - \frac{e^x}{2\sqrt{x}}}{x}\newlineh(x)=ex(x12x)xh'(x) = \frac{e^x(\sqrt{x} - \frac{1}{2\sqrt{x}})}{x}\newlineh(x)=ex(x12x)xh'(x) = \frac{e^x(\sqrt{x} - \frac{1}{2\sqrt{x}})}{x}
  6. Check Answer Choices: Check the answer choices to see which one matches our result.\newlineThe correct answer is (D) ex(x12x)e^{x}(\sqrt{x}-\frac{1}{2\sqrt{x}}).

More problems from Find derivatives of using multiple formulae