Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d^(2))/(dx^(2))[e^(7x-4)]
Choose 1 answer:
(A) 
7e^(7x-4)
(B) 
49e^(7x-4)
(C) 
-16e^(7x)
(D) 
16e^(7x-4)

Find d2dx2[e7x4] \frac{d^{2}}{d x^{2}}\left[e^{7 x-4}\right] \newlineChoose 11 answer:\newline(A) 7e7x4 7 e^{7 x-4} \newline(B) 49e7x4 49 e^{7 x-4} \newline(C) 16e7x -16 e^{7 x} \newline(D) 16e7x4 16 e^{7 x-4}

Full solution

Q. Find d2dx2[e7x4] \frac{d^{2}}{d x^{2}}\left[e^{7 x-4}\right] \newlineChoose 11 answer:\newline(A) 7e7x4 7 e^{7 x-4} \newline(B) 49e7x4 49 e^{7 x-4} \newline(C) 16e7x -16 e^{7 x} \newline(D) 16e7x4 16 e^{7 x-4}
  1. Differentiate Function: Differentiate the function e7x4e^{7x-4} with respect to xx for the first time.\newlineThe derivative of eue^{u} with respect to xx is ueuu'e^{u}, where uu is a function of xx and uu' is the derivative of uu with respect to xx.\newlineLet xx00, then xx11.\newlinexx22
  2. Find First Derivative: Differentiate the result from Step 11 with respect to xx for the second time to find the second derivative.\newlineAgain, we use the rule for differentiating eue^{u}, where u=7x4u = 7x - 4 and u=7u' = 7.\newlined2dx2(e7x4)=7ddx(e7x4)=7×7e7x4\frac{d^{2}}{dx^{2}}(e^{7x-4}) = 7\frac{d}{dx}(e^{7x-4}) = 7 \times 7e^{7x-4}
  3. Find Second Derivative: Simplify the expression from Step 22 to find the second derivative.\newline(d2dx2)(e7x4)=49e7x4(\frac{d^2}{dx^2})(e^{7x-4}) = 49e^{7x-4}

More problems from Find derivatives of using multiple formulae