Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d^(2))/(dx^(2))[e^(7x-4)]
Choose 1 answer:
(A) 
49e^(7x-4)
(B) 
7e^(7x-4)
(C) 
-16e^(7x)
(D) 
16e^(7x-4)

Find d2dx2[e7x4] \frac{d^{2}}{d x^{2}}\left[e^{7 x-4}\right] \newlineChoose 11 answer:\newline(A) 49e7x4 49 e^{7 x-4} \newline(B) 7e7x4 7 e^{7 x-4} \newline(C) 16e7x -16 e^{7 x} \newline(D) 16e7x4 16 e^{7 x-4}

Full solution

Q. Find d2dx2[e7x4] \frac{d^{2}}{d x^{2}}\left[e^{7 x-4}\right] \newlineChoose 11 answer:\newline(A) 49e7x4 49 e^{7 x-4} \newline(B) 7e7x4 7 e^{7 x-4} \newline(C) 16e7x -16 e^{7 x} \newline(D) 16e7x4 16 e^{7 x-4}
  1. Differentiate Function: Differentiate the function e7x4e^{7x-4} with respect to xx for the first time.\newlineThe derivative of eue^{u} with respect to xx is ueuu'e^{u}, where uu is a function of xx and uu' is the derivative of uu with respect to xx.\newlineLet xx00, then xx11.\newlinexx22
  2. Find First Derivative: Differentiate the result from Step 11 with respect to xx for the second time to find the second derivative.\newlineUsing the same rule as in Step 11, we differentiate 7e(7x4)7e^{(7x-4)} with respect to xx.\newlineLet u=7x4u = 7x - 4 again, then u=7u' = 7 (which remains the same).\newlined2dx2[e(7x4)]=7ddx[e(7x4)]=7×7e(7x4)=49e(7x4)\frac{d^2}{dx^2}[e^{(7x-4)}] = 7\frac{d}{dx}[e^{(7x-4)}] = 7 \times 7e^{(7x-4)} = 49e^{(7x-4)}

More problems from Find derivatives of using multiple formulae