Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(x+6)^(2)-16
At what values of x does the graph of the function intersect the x-axis?
Choose 1 answer:
(A) x=-2,x=10
(B) x=2,x=-10
(C) x=-2,x=-10
(D) f(x) does not intersect the x-axis.

f(x)=(x+6)216f(x)=(x+6)^2-16\newlineAt what values of xx does the graph of the function intersect the xx-axis?\newlineChoose 11 answer:\newline(A) x=2x=-2, x=10x=10\newline(B) x=2x=2, x=10x=-10\newline(C) x=2x=-2, x=10x=-10\newline(D) f(x)f(x) does not intersect the xx-axis.

Full solution

Q. f(x)=(x+6)216f(x)=(x+6)^2-16\newlineAt what values of xx does the graph of the function intersect the xx-axis?\newlineChoose 11 answer:\newline(A) x=2x=-2, x=10x=10\newline(B) x=2x=2, x=10x=-10\newline(C) x=2x=-2, x=10x=-10\newline(D) f(x)f(x) does not intersect the xx-axis.
  1. Set Equation and Solve: To find the xx-intercepts of the graph of the function, we need to set f(x)f(x) to 00 and solve for xx. So, we set the equation (x+6)216=0(x+6)^2 - 16 = 0.
  2. Solve for x: Now we solve the equation for x.\newline(x+6)216=0(x+6)^2 - 16 = 0\newline(x+6)2=16(x+6)^2 = 16
  3. Take Square Root: Next, we take the square root of both sides of the equation.\newline(x+6)2=±16\sqrt{(x+6)^2} = \pm\sqrt{16}\newlinex+6=±4x + 6 = \pm4
  4. Two Equations to Solve: We now have two equations to solve for xx:1.1. x+6=4x + 6 = 42.2. x+6=4x + 6 = -4
  5. Solve for x (Equation 11): Solving the first equation for x:\newlinex+6=4x + 6 = 4\newlinex=46x = 4 - 6\newlinex=2x = -2
  6. Solve for x (Equation 22): Solving the second equation for x:\newlinex+6=4x + 6 = -4\newlinex=46x = -4 - 6\newlinex=10x = -10

More problems from Reflections of functions