Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(x-10)^(2)-49
At what values of 
x does the graph of the function intersect the 
x-axis?
Choose 1 answer:
(A) 
x=17,x=3
(B) 
x=17,x=-3
(c) 
x=-17,x=3
(D) 
f(x) does not intersect the 
x-axis.

f(x)=(x10)249 f(x)=(x-10)^{2}-49 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=17,x=3 x=17, x=3 \newline(B) x=17,x=3 x=17, x=-3 \newline(C) x=17,x=3 x=-17, x=3 \newline(D) f(x) f(x) does not intersect the x x -axis.

Full solution

Q. f(x)=(x10)249 f(x)=(x-10)^{2}-49 \newlineAt what values of x x does the graph of the function intersect the x x -axis?\newlineChoose 11 answer:\newline(A) x=17,x=3 x=17, x=3 \newline(B) x=17,x=3 x=17, x=-3 \newline(C) x=17,x=3 x=-17, x=3 \newline(D) f(x) f(x) does not intersect the x x -axis.
  1. Problem Understanding: Understand the problem.\newlineThe graph of a function intersects the x-axis where the function value f(x)f(x) is equal to 00. So we need to find the values of xx for which f(x)=0f(x) = 0.
  2. Setting the Equation: Set the function equal to zero and solve for x.\newlinef(x) = (x10)249=0(x - 10)^2 - 49 = 0
  3. Solving the Quadratic Equation: Solve the quadratic equation.\newline(x10)2=49(x - 10)^2 = 49\newlineTake the square root of both sides:\newline(x10)2=±49\sqrt{(x - 10)^2} = \pm\sqrt{49}\newlinex - 1010 = \pm77
  4. Final Solution: Solve for xx.x10=7orx10=7x - 10 = 7 \quad \text{or} \quad x - 10 = -7x=17orx=3x = 17 \quad \text{or} \quad x = 3

More problems from Transformations of absolute value functions: translations, reflections, and dilations