Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=arctan(3x)

f^(')(x)= ?
Choose 1 answer:
(A) 
(3)/(1-9x^(2))
(B) 
(-3)/(1-9x^(2))
(C) 
(3)/(1+9x^(2))
(D) 
(-3)/(1+9x^(2))

f(x)=arctan(3x) f(x)=\arctan (3 x) \newlinef(x)= f^{\prime}(x)= ?\newlineChoose 11 answer:\newline(A) 319x2 \frac{3}{1-9 x^{2}} \newline(B) 319x2 \frac{-3}{1-9 x^{2}} \newline(C) 31+9x2 \frac{3}{1+9 x^{2}} \newline(D) 31+9x2 \frac{-3}{1+9 x^{2}}

Full solution

Q. f(x)=arctan(3x) f(x)=\arctan (3 x) \newlinef(x)= f^{\prime}(x)= ?\newlineChoose 11 answer:\newline(A) 319x2 \frac{3}{1-9 x^{2}} \newline(B) 319x2 \frac{-3}{1-9 x^{2}} \newline(C) 31+9x2 \frac{3}{1+9 x^{2}} \newline(D) 31+9x2 \frac{-3}{1+9 x^{2}}
  1. Apply Chain Rule: Use the chain rule to differentiate f(x)=arctan(3x)f(x) = \arctan(3x). The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Derivative of arctan(u): The outer function is arctan(u)\text{arctan}(u) with u=3xu = 3x. The derivative of arctan(u)\text{arctan}(u) with respect to uu is 11+u2\frac{1}{1+u^2}.
  3. Derivative of 3x3x: The inner function is u=3xu = 3x. The derivative of 3x3x with respect to xx is 33.
  4. Apply Chain Rule: Apply the chain rule: f(x)=11+(3x)2ddx(3x)f'(x) = \frac{1}{1+(3x)^2} \cdot \frac{d}{dx}(3x).
  5. Calculate Derivative: Calculate the derivative: f(x)=(11+9x2)3f'(x) = \left(\frac{1}{1+9x^2}\right) \cdot 3.
  6. Simplify Expression: Simplify the expression: f(x)=31+9x2f'(x) = \frac{3}{1+9x^2}.

More problems from Find derivatives of inverse trigonometric functions